Mathematical models of steady-state temperature fields produced by multi-piped freezing

The multi-piped freezing method is usually applied in artificial ground freezing (AGF) projects to fulfill special construction requirements, such as two-, three-, or four-piped freezing. Based on potential superposition theory, this paper gives analytical solutions to steady-state frozen temperatur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Zhejiang University. A. Science 2016-09, Vol.17 (9), p.702-723
Hauptverfasser: Hu, Xiang-dong, Guo, Wang, Zhang, Luo-yu, Wang, Jin-tai, Dong, Xue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The multi-piped freezing method is usually applied in artificial ground freezing (AGF) projects to fulfill special construction requirements, such as two-, three-, or four-piped freezing. Based on potential superposition theory, this paper gives analytical solutions to steady-state frozen temperature for two, three, and four freezing pipes with different temperatures and arranged at random. Specific solutions are derived for some particular arrangements, such as three freezing pipes in a linear arrangement with equal or unequal spacing, right and isosceles triangle arrangements, four freezing pipes in a linear arrangement with equal spacing, and rhombus and rectangle arrangements. A comparison between the analytical solutions and numerical thermal analysis shows that the analytical solutions are sufficiently precise. As a part of the theory of AGF, the analytical solutions of temperature fields for multi-piped freezing with arbitrary layouts and different temperatures of freezing pipes are approached for the first time.
ISSN:1673-565X
1862-1775
DOI:10.1631/jzus.a1600211