Equivariant Degenerations of Spherical Modules: Part II
We determine, under a certain assumption, the Alexeev–Brion moduli scheme M of affine spherical G -varieties with a prescribed weight monoid . In Papadakis and Van Steirteghem (Ann. Inst. Fourier (Grenoble). 62 (5) 1765–1809 19 ) we showed that if G is a connected complex reductive group of type A a...
Gespeichert in:
Veröffentlicht in: | Algebras and representation theory 2016-10, Vol.19 (5), p.1135-1171 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We determine, under a certain assumption, the Alexeev–Brion moduli scheme M of affine spherical
G
-varieties with a prescribed weight monoid . In Papadakis and Van Steirteghem (Ann. Inst. Fourier (Grenoble).
62
(5) 1765–1809
19
) we showed that if
G
is a connected complex reductive group of type
A
and is the weight monoid of a spherical
G
-module, then M is an affine space. Here we prove that this remains true without any restriction on the type of
G
. |
---|---|
ISSN: | 1386-923X 1572-9079 |
DOI: | 10.1007/s10468-016-9614-7 |