Free-Variable Semantic Tableaux for the Logic of Fuzzy Inequalities
We present a free-variable tableau calculus for the logic of fuzzy inequalities F∀, which is an extension of infinite-valued first-order Lukasiewicz logic L∀. The set of all L∀-sentences provable in the hypersequent calculus of Baaz and Metcalfe for L∀ is embedded into the set of all F∀-sentences pr...
Gespeichert in:
Veröffentlicht in: | Algebra and logic 2016-05, Vol.55 (2), p.103-127 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a free-variable tableau calculus for the logic of fuzzy inequalities F∀, which is an extension of infinite-valued first-order Lukasiewicz logic L∀. The set of all L∀-sentences provable in the hypersequent calculus of Baaz and Metcalfe for L∀ is embedded into the set of all F∀-sentences provable in the given tableau calculus. We prove NPcompleteness of the problem of checking tableau closability and propose an algorithm, which is based on unification, for solving the problem. |
---|---|
ISSN: | 0002-5232 1573-8302 |
DOI: | 10.1007/s10469-016-9382-9 |