Joint wireless and optical resources allocation for availability-guaranteed service in survivable fiber-wireless access network
The fiber-wireless (FIWi) access network not only leverages the technical merits of wireless and optical access networks, but also provides a potential opportunity for the design of survivable access networks. Previous works have studied the survivability of FiWi access network against network compo...
Gespeichert in:
Veröffentlicht in: | Photonic network communications 2016-10, Vol.32 (2), p.310-319 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fiber-wireless (FIWi) access network not only leverages the technical merits of wireless and optical access networks, but also provides a potential opportunity for the design of survivable access networks. Previous works have studied the survivability of FiWi access network against network component failure by means of backup fiber deployment and wireless rerouting. However, most of these works put less attention on the connection availability and ignore the joint allocation of wireless and optical resources, which plays an important role in improving the global network performance gain. In this paper, we consider a notable failure scenario in FiWi access network but less mentioned in previous works, i.e., single shared-risk link group failure. We first propose a model for FiWi network to estimate the connection availability of service demand. Then, a novel resource allocation approach is proposed to provide the availability-guaranteed service. Under the requirements of bandwidth and connection availability, we deal with the optimal allocation of joint wireless and optical resources with the objective of minimum resource consumption. Numerical results demonstrate that the proposed scheme can reduce the resource consumption significantly compared to the resource allocation without considering connection availability. |
---|---|
ISSN: | 1387-974X 1572-8188 |
DOI: | 10.1007/s11107-016-0608-5 |