On Gauging Symmetry of Modular Categories

Topological order of a topological phase of matter in two spacial dimensions is encoded by a unitary modular (tensor) category (UMC). A group symmetry of the topological phase induces a group symmetry of its corresponding UMC. Gauging is a well-known theoretical tool to promote a global symmetry to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2016-12, Vol.348 (3), p.1043-1064
Hauptverfasser: Cui, Shawn X., Galindo, César, Plavnik, Julia Yael, Wang, Zhenghan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Topological order of a topological phase of matter in two spacial dimensions is encoded by a unitary modular (tensor) category (UMC). A group symmetry of the topological phase induces a group symmetry of its corresponding UMC. Gauging is a well-known theoretical tool to promote a global symmetry to a local gauge symmetry. We give a mathematical formulation of gauging in terms of higher category formalism. Roughly, given a UMC with a symmetry group G , gauging is a 2-step process: first extend the UMC to a G -crossed braided fusion category and then take the equivariantization of the resulting category. Gauging can tell whether or not two enriched topological phases of matter are different, and also provides a way to construct new UMCs out of old ones. We derive a formula for the H 4 -obstruction, prove some properties of gauging, and carry out gauging for two concrete examples.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-016-2633-8