Study of the Periodic or Nonnegative Periodic Solutions of Functional Differential Equations via Krasnoselskii–Burton’s Theorem

In this paper, we study the existence of periodic or nonnegative periodic solutions of the nonlinear neutral differential equation d d t [ x ( t ) - Q ( t , x ( t - τ ( t ) ) ) ] = - a ( t ) h ( x ( t - τ ( t ) ) ) + G ( t , x ( t ) , x ( t - τ ( t ) ) ) . We invert this equation to construct a sum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations and dynamical systems 2016-10, Vol.24 (4), p.391-406
Hauptverfasser: Mesmouli, Mouataz Billah, Ardjouni, Abdelouaheb, Djoudi, Ahcene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue 4
container_start_page 391
container_title Differential equations and dynamical systems
container_volume 24
creator Mesmouli, Mouataz Billah
Ardjouni, Abdelouaheb
Djoudi, Ahcene
description In this paper, we study the existence of periodic or nonnegative periodic solutions of the nonlinear neutral differential equation d d t [ x ( t ) - Q ( t , x ( t - τ ( t ) ) ) ] = - a ( t ) h ( x ( t - τ ( t ) ) ) + G ( t , x ( t ) , x ( t - τ ( t ) ) ) . We invert this equation to construct a sum of a compact map and a large contraction which is suitable for applying the modification of Krasnoselskii’s theorem. The Caratheodory condition is used for the functions Q and G .
doi_str_mv 10.1007/s12591-014-0235-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880854994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880854994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bdc7dded27593b60c38231980b350f9d32d61d771d64d2388a9ab0137af7948e3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhSMEEqXwAGyRmA12nMT2CKUFRAVILbPlxE7rktqtnVTqVolHYOL1-iQkhKEL0_3ROUf3fkFwieA1gpDceBQlDAGIYgAjnIDkKOhBRmKQUgKPf3sEcILi0-DM-wWEKWEx6QWfk6qW29AWYTVX4Zty2kqdh9aFL9YYNROV3hzsJ7asK22Nbx2j2uTtIMrwXheFcspUuhmG61p0oo0W4bMT3livSv-h9X73dVe7ypr97tuH07myTi3Pg5NClF5d_NV-8D4aTgePYPz68DS4HYMco7QCmcyJlEpGJGE4S2GOaYQRozDDCSyYxJFMkSQEyTSWEaZUMJFBhIkoml-pwv3gqstdObuula_4wtauOd9zRCmkScxY3KhQp8qd9d6pgq-cXgq35QjyljXvWPOGNW9Z86TxRJ3HN1ozU-4g-V_TD_lFhYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880854994</pqid></control><display><type>article</type><title>Study of the Periodic or Nonnegative Periodic Solutions of Functional Differential Equations via Krasnoselskii–Burton’s Theorem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mesmouli, Mouataz Billah ; Ardjouni, Abdelouaheb ; Djoudi, Ahcene</creator><creatorcontrib>Mesmouli, Mouataz Billah ; Ardjouni, Abdelouaheb ; Djoudi, Ahcene</creatorcontrib><description>In this paper, we study the existence of periodic or nonnegative periodic solutions of the nonlinear neutral differential equation d d t [ x ( t ) - Q ( t , x ( t - τ ( t ) ) ) ] = - a ( t ) h ( x ( t - τ ( t ) ) ) + G ( t , x ( t ) , x ( t - τ ( t ) ) ) . We invert this equation to construct a sum of a compact map and a large contraction which is suitable for applying the modification of Krasnoselskii’s theorem. The Caratheodory condition is used for the functions Q and G .</description><identifier>ISSN: 0971-3514</identifier><identifier>EISSN: 0974-6870</identifier><identifier>DOI: 10.1007/s12591-014-0235-5</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Computer Science ; Engineering ; Mathematics ; Mathematics and Statistics ; Nonlinear differential equations ; Original Research</subject><ispartof>Differential equations and dynamical systems, 2016-10, Vol.24 (4), p.391-406</ispartof><rights>Foundation for Scientific Research and Technological Innovation 2015</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bdc7dded27593b60c38231980b350f9d32d61d771d64d2388a9ab0137af7948e3</citedby><cites>FETCH-LOGICAL-c316t-bdc7dded27593b60c38231980b350f9d32d61d771d64d2388a9ab0137af7948e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12591-014-0235-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12591-014-0235-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Mesmouli, Mouataz Billah</creatorcontrib><creatorcontrib>Ardjouni, Abdelouaheb</creatorcontrib><creatorcontrib>Djoudi, Ahcene</creatorcontrib><title>Study of the Periodic or Nonnegative Periodic Solutions of Functional Differential Equations via Krasnoselskii–Burton’s Theorem</title><title>Differential equations and dynamical systems</title><addtitle>Differ Equ Dyn Syst</addtitle><description>In this paper, we study the existence of periodic or nonnegative periodic solutions of the nonlinear neutral differential equation d d t [ x ( t ) - Q ( t , x ( t - τ ( t ) ) ) ] = - a ( t ) h ( x ( t - τ ( t ) ) ) + G ( t , x ( t ) , x ( t - τ ( t ) ) ) . We invert this equation to construct a sum of a compact map and a large contraction which is suitable for applying the modification of Krasnoselskii’s theorem. The Caratheodory condition is used for the functions Q and G .</description><subject>Computer Science</subject><subject>Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear differential equations</subject><subject>Original Research</subject><issn>0971-3514</issn><issn>0974-6870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhSMEEqXwAGyRmA12nMT2CKUFRAVILbPlxE7rktqtnVTqVolHYOL1-iQkhKEL0_3ROUf3fkFwieA1gpDceBQlDAGIYgAjnIDkKOhBRmKQUgKPf3sEcILi0-DM-wWEKWEx6QWfk6qW29AWYTVX4Zty2kqdh9aFL9YYNROV3hzsJ7asK22Nbx2j2uTtIMrwXheFcspUuhmG61p0oo0W4bMT3livSv-h9X73dVe7ypr97tuH07myTi3Pg5NClF5d_NV-8D4aTgePYPz68DS4HYMco7QCmcyJlEpGJGE4S2GOaYQRozDDCSyYxJFMkSQEyTSWEaZUMJFBhIkoml-pwv3gqstdObuula_4wtauOd9zRCmkScxY3KhQp8qd9d6pgq-cXgq35QjyljXvWPOGNW9Z86TxRJ3HN1ozU-4g-V_TD_lFhYI</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Mesmouli, Mouataz Billah</creator><creator>Ardjouni, Abdelouaheb</creator><creator>Djoudi, Ahcene</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Study of the Periodic or Nonnegative Periodic Solutions of Functional Differential Equations via Krasnoselskii–Burton’s Theorem</title><author>Mesmouli, Mouataz Billah ; Ardjouni, Abdelouaheb ; Djoudi, Ahcene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bdc7dded27593b60c38231980b350f9d32d61d771d64d2388a9ab0137af7948e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer Science</topic><topic>Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear differential equations</topic><topic>Original Research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mesmouli, Mouataz Billah</creatorcontrib><creatorcontrib>Ardjouni, Abdelouaheb</creatorcontrib><creatorcontrib>Djoudi, Ahcene</creatorcontrib><collection>CrossRef</collection><jtitle>Differential equations and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mesmouli, Mouataz Billah</au><au>Ardjouni, Abdelouaheb</au><au>Djoudi, Ahcene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the Periodic or Nonnegative Periodic Solutions of Functional Differential Equations via Krasnoselskii–Burton’s Theorem</atitle><jtitle>Differential equations and dynamical systems</jtitle><stitle>Differ Equ Dyn Syst</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>24</volume><issue>4</issue><spage>391</spage><epage>406</epage><pages>391-406</pages><issn>0971-3514</issn><eissn>0974-6870</eissn><abstract>In this paper, we study the existence of periodic or nonnegative periodic solutions of the nonlinear neutral differential equation d d t [ x ( t ) - Q ( t , x ( t - τ ( t ) ) ) ] = - a ( t ) h ( x ( t - τ ( t ) ) ) + G ( t , x ( t ) , x ( t - τ ( t ) ) ) . We invert this equation to construct a sum of a compact map and a large contraction which is suitable for applying the modification of Krasnoselskii’s theorem. The Caratheodory condition is used for the functions Q and G .</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12591-014-0235-5</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0971-3514
ispartof Differential equations and dynamical systems, 2016-10, Vol.24 (4), p.391-406
issn 0971-3514
0974-6870
language eng
recordid cdi_proquest_journals_1880854994
source SpringerLink Journals - AutoHoldings
subjects Computer Science
Engineering
Mathematics
Mathematics and Statistics
Nonlinear differential equations
Original Research
title Study of the Periodic or Nonnegative Periodic Solutions of Functional Differential Equations via Krasnoselskii–Burton’s Theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20Periodic%20or%20Nonnegative%20Periodic%20Solutions%20of%20Functional%20Differential%20Equations%20via%20Krasnoselskii%E2%80%93Burton%E2%80%99s%20Theorem&rft.jtitle=Differential%20equations%20and%20dynamical%20systems&rft.au=Mesmouli,%20Mouataz%20Billah&rft.date=2016-10-01&rft.volume=24&rft.issue=4&rft.spage=391&rft.epage=406&rft.pages=391-406&rft.issn=0971-3514&rft.eissn=0974-6870&rft_id=info:doi/10.1007/s12591-014-0235-5&rft_dat=%3Cproquest_cross%3E1880854994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880854994&rft_id=info:pmid/&rfr_iscdi=true