Study of the Periodic or Nonnegative Periodic Solutions of Functional Differential Equations via Krasnoselskii–Burton’s Theorem

In this paper, we study the existence of periodic or nonnegative periodic solutions of the nonlinear neutral differential equation d d t [ x ( t ) - Q ( t , x ( t - τ ( t ) ) ) ] = - a ( t ) h ( x ( t - τ ( t ) ) ) + G ( t , x ( t ) , x ( t - τ ( t ) ) ) . We invert this equation to construct a sum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations and dynamical systems 2016-10, Vol.24 (4), p.391-406
Hauptverfasser: Mesmouli, Mouataz Billah, Ardjouni, Abdelouaheb, Djoudi, Ahcene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the existence of periodic or nonnegative periodic solutions of the nonlinear neutral differential equation d d t [ x ( t ) - Q ( t , x ( t - τ ( t ) ) ) ] = - a ( t ) h ( x ( t - τ ( t ) ) ) + G ( t , x ( t ) , x ( t - τ ( t ) ) ) . We invert this equation to construct a sum of a compact map and a large contraction which is suitable for applying the modification of Krasnoselskii’s theorem. The Caratheodory condition is used for the functions Q and G .
ISSN:0971-3514
0974-6870
DOI:10.1007/s12591-014-0235-5