Prediction of turn down warping during hot plate rolling based on a Gaussian function
Turn down warping is a shape defect observed at the front end of a plate during hot rolling. To produce a flat plate without warping, a precise prediction of turn down warping is essential to achieve optimal control. Therefore, we propose a model based on a Gaussian function to predict turn down war...
Gespeichert in:
Veröffentlicht in: | International journal of material forming 2016-11, Vol.9 (5), p.705-713 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Turn down warping is a shape defect observed at the front end of a plate during hot rolling. To produce a flat plate without warping, a precise prediction of turn down warping is essential to achieve optimal control. Therefore, we propose a model based on a Gaussian function to predict turn down warping. The model uses the results from numerical analyses of hot plate rolling. The finite element code MARC was used for the numerical analysis. Hot plate rolling processing parameters, such as roll diameter, plate dimension, rolling speed, and pass line were all considered in the model. To verify the accuracy of the prediction model, the numerical results obtained by FEM were confirmed with data measured during industrial hot plate rolling. For the actual measurements of turn down warping, image processed high speed camera data from the exit side of the rolling were used. The results show that the proposed Gaussian function model can successfully predict turn down warping of a plate’s front end under various hot plate rolling conditions. |
---|---|
ISSN: | 1960-6206 1960-6214 |
DOI: | 10.1007/s12289-015-1261-8 |