Positive existential definability of multiplication from addition and the range of a polynomial

We consider the problem of recovering multiplication in the integers from enrichments of its additive structure, in the positive existential context. We prove that if a conjecture by Caporaso–Harris–Mazur holds, then for all integer-valued polynomials F of degree at least 2, multiplication is positi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2016-10, Vol.216 (1), p.273-306
Hauptverfasser: Pasten, Hector, Vidaux, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of recovering multiplication in the integers from enrichments of its additive structure, in the positive existential context. We prove that if a conjecture by Caporaso–Harris–Mazur holds, then for all integer-valued polynomials F of degree at least 2, multiplication is positive-existentially definable in (Z; 0, 1,+, R F , =) where R F is the unary relation F (Z). Similar results were only known for the polynomials F ( t ) = t 2 (under the Bombieri–Lang conjecture) and F ( t ) = t n (under a generalization of the abc conjecture).
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-016-1410-x