In Situ Laboratory-Based Transmission X-Ray Microscopy and Tomography of Material Deformation at the Nanoscale

Whether it be the mechanical response of biomaterials or the crack propagation pathways within metal alloys, observing how damage occurs (both spatially and temporally) is critical to understanding materials behavior. Here, nanoscale transmission X-ray microscopy (TXRM) is used to follow the initiat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental mechanics 2016-11, Vol.56 (9), p.1585-1597
Hauptverfasser: Patterson, B. M., Cordes, N. L., Henderson, K., Mertens, J. C. E., Clarke, A. J., Hornberger, B., Merkle, A., Etchin, S., Tkachuk, A., Leibowitz, M., Trapp, D., Qiu, W., Zhang, B., Bale, H., Lu, X., Hartwell, R., Withers, P. J., Bradley, R. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Whether it be the mechanical response of biomaterials or the crack propagation pathways within metal alloys, observing how damage occurs (both spatially and temporally) is critical to understanding materials behavior. Here, nanoscale transmission X-ray microscopy (TXRM) is used to follow the initiation and propagation of damage during quasi-static mechanical testing of natural, crystalline, and metallic materials. The coupling of a novel load stage and TXRM for in situ mechanical testing enables both radiographic (2D) and tomographic (3D) characterization. With an imaging resolution down to 50 nm during uniaxial nanoindentation, compression, or tension, TXRM is ideally suited for the characterization of materials degradation. Several applications are demonstrated including nanoindentation of dentin, compression of a single crystal of high explosive, and tensile testing of both beetle cuticle and Al-Cu alloy. These experiments highlight the capability of the new experimental fixture to provide enhanced insight on material performance through four dimensional (3D + time) observation and analysis.
ISSN:0014-4851
1741-2765
DOI:10.1007/s11340-016-0197-3