Spectral gaps, additive energy, and a fractal uncertainty principle

We obtain an essential spectral gap for n -dimensional convex co-compact hyperbolic manifolds with the dimension δ of the limit set close to n - 1 2 . The size of the gap is expressed using the additive energy of stereographic projections of the limit set. This additive energy can in turn be estimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2016-07, Vol.26 (4), p.1011-1094
Hauptverfasser: Dyatlov, Semyon, Zahl, Joshua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain an essential spectral gap for n -dimensional convex co-compact hyperbolic manifolds with the dimension δ of the limit set close to n - 1 2 . The size of the gap is expressed using the additive energy of stereographic projections of the limit set. This additive energy can in turn be estimated in terms of the constants in Ahlfors–David regularity of the limit set. Our proofs use new microlocal methods, in particular a notion of a fractal uncertainty principle.
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-016-0378-3