Invariant Metrizability and Projective Metrizability on Lie Groups and Homogeneous Spaces

In this paper, we study the invariant metrizability and projective metrizability problems for the special case of the geodesic spray associated to the canonical connection of a Lie group. We prove that such canonical spray is projectively Finsler metrizable if and only if it is Riemann metrizable. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2016-12, Vol.13 (6), p.4567-4580
Hauptverfasser: Bucataru, Ioan, Milkovszki, Tamás, Muzsnay, Zoltán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the invariant metrizability and projective metrizability problems for the special case of the geodesic spray associated to the canonical connection of a Lie group. We prove that such canonical spray is projectively Finsler metrizable if and only if it is Riemann metrizable. This result means that this structure is rigid in the sense that considering left invariant metrics, the potentially much larger class of projective Finsler metrizable canonical sprays, corresponding to Lie groups, coincides with the class of Riemann metrizable canonical sprays. Generalisation of these results for geodesic orbit spaces are given.
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-016-0762-0