The Hensel–Shafarevich Canonical Basis in Lubin–Tate Formal Modules
In the present paper, a generalization of the Hensel–Shafarevich basis for Lubin–Tate formal modules over a local field is presented. These formal modules are constructed on the maximal ideal of some extension of this field. The cases where the extension has a perfect residue field or an imperfect r...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2016-12, Vol.219 (3), p.462-472 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, a generalization of the Hensel–Shafarevich basis for Lubin–Tate formal modules over a local field is presented. These formal modules are constructed on the maximal ideal of some extension of this field. The cases where the extension has a perfect residue field or an imperfect residue field are studied. Bibliography: 10 titles. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-016-3119-0 |