Toward a polynomial basis of the algebra of peak quasisymmetric functions
Hazewinkel proved the Ditters conjecture that the algebra of quasisymmetric functions over the integers is free commutative by constructing a nice polynomial basis. In this paper, we prove a structure theorem for the algebra of peak quasisymmetric functions (PQSym) over the integers. It provides a p...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2016-12, Vol.44 (4), p.931-946 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hazewinkel proved the Ditters conjecture that the algebra of quasisymmetric functions over the integers is free commutative by constructing a nice polynomial basis. In this paper, we prove a structure theorem for the algebra of peak quasisymmetric functions (PQSym) over the integers. It provides a polynomial basis of PQSym over the rational field, different from Hsiao’s basis, and implies the freeness of PQSym over its subring of symmetric functions spanned by Schur’s Q-functions. |
---|---|
ISSN: | 0925-9899 1572-9192 |
DOI: | 10.1007/s10801-016-0695-5 |