Toward a polynomial basis of the algebra of peak quasisymmetric functions

Hazewinkel proved the Ditters conjecture that the algebra of quasisymmetric functions over the integers is free commutative by constructing a nice polynomial basis. In this paper, we prove a structure theorem for the algebra of peak quasisymmetric functions (PQSym) over the integers. It provides a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2016-12, Vol.44 (4), p.931-946
1. Verfasser: Li, Yunnan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hazewinkel proved the Ditters conjecture that the algebra of quasisymmetric functions over the integers is free commutative by constructing a nice polynomial basis. In this paper, we prove a structure theorem for the algebra of peak quasisymmetric functions (PQSym) over the integers. It provides a polynomial basis of PQSym over the rational field, different from Hsiao’s basis, and implies the freeness of PQSym over its subring of symmetric functions spanned by Schur’s Q-functions.
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-016-0695-5