Continuity of the Spectrum of a Field of Self-Adjoint Operators

Given a family of self-adjoint operators ( A t ) t ∈ T indexed by a parameter t in some topological space T , necessary and sufficient conditions are given for the spectrum σ ( A t ) to be Vietoris continuous with respect to t . Equivalently the boundaries and the gap edges are continuous in t . If...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2016-12, Vol.17 (12), p.3425-3442
Hauptverfasser: Beckus, Siegfried, Bellissard, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a family of self-adjoint operators ( A t ) t ∈ T indexed by a parameter t in some topological space T , necessary and sufficient conditions are given for the spectrum σ ( A t ) to be Vietoris continuous with respect to t . Equivalently the boundaries and the gap edges are continuous in t . If ( T , d ) is a complete metric space with metric d , these conditions are extended to guarantee Hölder continuity of the spectral boundaries and of the spectral gap edges. As a corollary, an upper bound is provided for the size of closing gaps.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-016-0496-3