Continuity of the Spectrum of a Field of Self-Adjoint Operators
Given a family of self-adjoint operators ( A t ) t ∈ T indexed by a parameter t in some topological space T , necessary and sufficient conditions are given for the spectrum σ ( A t ) to be Vietoris continuous with respect to t . Equivalently the boundaries and the gap edges are continuous in t . If...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2016-12, Vol.17 (12), p.3425-3442 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a family of self-adjoint operators
(
A
t
)
t
∈
T
indexed by a parameter
t
in some topological space
T
, necessary and sufficient conditions are given for the spectrum
σ
(
A
t
)
to be Vietoris continuous with respect to
t
. Equivalently the boundaries and the gap edges are continuous in
t
. If (
T
,
d
) is a complete metric space with metric
d
, these conditions are extended to guarantee Hölder continuity of the spectral boundaries and of the spectral gap edges. As a corollary, an upper bound is provided for the size of closing gaps. |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-016-0496-3 |