Text/shape classifier for mobile applications with handwriting input

The paper provides a practical solution to a real-time text/shape differentiation problem for online handwriting input. The proposed structure of the classification system comprises stroke grouping and stroke classification blocks. A new set of features is derived that has low computational complexi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal on document analysis and recognition 2016-12, Vol.19 (4), p.369-379
Hauptverfasser: Degtyarenko, Illya, Radyvonenko, Olga, Bokhan, Kostiantyn, Khomenko, Viacheslav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper provides a practical solution to a real-time text/shape differentiation problem for online handwriting input. The proposed structure of the classification system comprises stroke grouping and stroke classification blocks. A new set of features is derived that has low computational complexity. The method achieves 98.5 % text/shape classification accuracy on a benchmark dataset. The proposed stroke grouping machine learning approach improves classification robustness in relation to different input styles. In contrast to the threshold-based techniques, this grouping adaptation enhances the overall discriminating accuracy of the text/shape recognition system by 11.3 %. The solution improves system’s response on a touch-screen device.
ISSN:1433-2833
1433-2825
DOI:10.1007/s10032-016-0276-0