Consistent multiscale analysis of heterogeneous thin plates with smoothed quadratic Hermite triangular elements

A consistent multiscale formulation is presented for the bending analysis of heterogeneous thin plate structures containing three dimensional reinforcements with in-plane periodicity. A multiscale asymptotic expansion of the displacement field is proposed to represent the in-plane periodicity, in wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanics and materials in design 2016-12, Vol.12 (4), p.539-562
Hauptverfasser: Dong, Boya, Li, Congying, Wang, Dongdong, Wu, Cheng-Tang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A consistent multiscale formulation is presented for the bending analysis of heterogeneous thin plate structures containing three dimensional reinforcements with in-plane periodicity. A multiscale asymptotic expansion of the displacement field is proposed to represent the in-plane periodicity, in which the microscopic and macroscopic thickness coordinates are set to be identical. This multiscale displacement expansion yields a local three dimensional unit cell problem and a global homogenized thin plate problem. The local unit cell problem is discretized with the tri-linear hexahedral elements to extract the homogenized material properties. The characteristic macroscopic deformation modes corresponding to the in-plane membrane deformations and out of plane bending deformations are discussed in detail. Thereafter the homogenized material properties are employed for the analysis of global homogenized thin plate with a smoothed quadratic Hermite triangular element formulation. The quadratic Hermite triangular element provides a complete C 1 approximation that is very desirable for thin plate modeling. Meanwhile, it corresponds to the constant strain triangle element and is able to reproduce a simple piecewise constant curvature field. Thus a unified numerical implementation for thin plate analysis can be conveniently realized using the triangular elements with discretization flexibility. The curvature smoothing operation is further introduced to improve the accuracy of the quadratic Hermite triangular element. The effectiveness of the proposed methodology is demonstrated through numerical examples.
ISSN:1569-1713
1573-8841
DOI:10.1007/s10999-015-9334-x