A Nonconventional Local Limit Theorem

Local limit theorems have their origin in the classical De Moivre–Laplace theorem, and they study the asymptotic behavior as N → ∞ of probabilities having the form P { S N = k } where S N = ∑ n = 1 N F ( ξ n ) is a sum of an integer-valued function F taken on i.i.d. or Markov-dependent sequence of r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2016-12, Vol.29 (4), p.1524-1553
Hauptverfasser: Hafouta, Yeor, Kifer, Yuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Local limit theorems have their origin in the classical De Moivre–Laplace theorem, and they study the asymptotic behavior as N → ∞ of probabilities having the form P { S N = k } where S N = ∑ n = 1 N F ( ξ n ) is a sum of an integer-valued function F taken on i.i.d. or Markov-dependent sequence of random variables { ξ j } . Corresponding results for lattice-valued and general functions F were obtained, as well. We extend here this type of results to nonconventional sums of the form S N = ∑ n = 1 N F ( ξ n , ξ 2 n , … , ξ ℓ n ) which continues the recent line of research studying various limit theorems for such expressions.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-015-0625-9