Investigation of the regimes of mixing of superconducting tunneling structures

The regimes of operation of a superconductor–insulator–superconductor tunnel junction based on three-layer structures Nb/AlOx/Nb and Nb/AlN/NbN as a harmonic mixer (for frequencies of the order of 600 and 20 GHz, respectively) and a frequency up-converter (in the frequency range from 0.1 to 5.0 GHz)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of the solid state 2016-11, Vol.58 (11), p.2191-2195
Hauptverfasser: Kalashnikov, K. V., Artanov, A. A., Filippenko, L. V., Koshelets, V. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The regimes of operation of a superconductor–insulator–superconductor tunnel junction based on three-layer structures Nb/AlOx/Nb and Nb/AlN/NbN as a harmonic mixer (for frequencies of the order of 600 and 20 GHz, respectively) and a frequency up-converter (in the frequency range from 0.1 to 5.0 GHz) have been investigated experimentally. The quasiparticle and Josephson mixing regimes have been compared. It has been shown that, in some practical applications, such as the use of the superconductor–insulator–superconductor junction as a cryogenic harmonic phase detector, the Josephson mixing regime is more preferable, because it can provide a higher signal and a greater signal-to-noise ratio as compared to the quasiparticle mixing regime. It has also been demonstrated that the Josephson mixing regime is promising for the use in signal multiplexing systems for superconducting detectors.
ISSN:1063-7834
1090-6460
DOI:10.1134/S1063783416110135