Decomposition of a Group over an Abelian Normal Subgroup

Let a group G have an Abelian normal subgroup A ; put G ¯ = G/A and g ¯ = gA for g ∈ G . We can think of A as a right ℤ G ¯ -module and define the action of an element u = α 1 g ¯ 1 +…+ α n g ¯ n ∈ ℤ G ¯ on a ∈ A by a formula a u = a g 1 α 1 ·…· a g n α n ; here a g i = g i − 1 a g i . Denote by Θ ℤ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and logic 2016-09, Vol.55 (4), p.315-326
1. Verfasser: Romanovskii, N. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue 4
container_start_page 315
container_title Algebra and logic
container_volume 55
creator Romanovskii, N. S.
description Let a group G have an Abelian normal subgroup A ; put G ¯ = G/A and g ¯ = gA for g ∈ G . We can think of A as a right ℤ G ¯ -module and define the action of an element u = α 1 g ¯ 1 +…+ α n g ¯ n ∈ ℤ G ¯ on a ∈ A by a formula a u = a g 1 α 1 ·…· a g n α n ; here a g i = g i − 1 a g i . Denote by Θ ℤ G ¯ ( A ) the annihilator of A in the ring ℤ G ¯ , which is a two-sided ideal. Let R = ℤ G ¯ / Θ ℤ G ¯ A . A subgroup A can also be treated as an R -module. We give a criterion for the existence of an R -decomposition of G over A , i.e., the possibility of embedding G in a semidirect product G ¯ · D , where D is an R -module. It is also proved that an R -decomposition always exists in one important case.
doi_str_mv 10.1007/s10469-016-9401-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880837149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498802338</galeid><sourcerecordid>A498802338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-34bc180f0ad53f6a2c3f5556490af4fd9fc1a2c1e55207504d4b99a1d6f2de593</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd_gLeC586XX21zHFOnMPSgnkOaJqOjbWrSyvzvzaiHCUoOj7x8Pu-FL0LXGBYYIL8NGFgmUsBZKhjgdH-CZpjnNC0okFM0AwCSckLJOboIYRevIitghoo7o13bu1APtesSZxOVrL0b-8R9Gp-oLlmWpqljfXa-VU3yOpbbw_slOrOqCebqp87R-8P92-ox3bysn1bLTaoZp0NKWalxARZUxanNFNHUcs4zJkBZZithNY5NbDgnkHNgFSuFULjKLKkMF3SObqa5vXcfowmD3LnRd3GlxEUBBc0xO6K2qjGy7qwbvNJtHbRcMhE5QmkRqcUfVDyVaWvtOmPr2P8l4EnQ3oXgjZW9r1vlvyQGechdTrnLmLs85C730SGTEyLbbY0_-vC_0jf5sIMK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880837149</pqid></control><display><type>article</type><title>Decomposition of a Group over an Abelian Normal Subgroup</title><source>SpringerLink Journals</source><creator>Romanovskii, N. S.</creator><creatorcontrib>Romanovskii, N. S.</creatorcontrib><description>Let a group G have an Abelian normal subgroup A ; put G ¯ = G/A and g ¯ = gA for g ∈ G . We can think of A as a right ℤ G ¯ -module and define the action of an element u = α 1 g ¯ 1 +…+ α n g ¯ n ∈ ℤ G ¯ on a ∈ A by a formula a u = a g 1 α 1 ·…· a g n α n ; here a g i = g i − 1 a g i . Denote by Θ ℤ G ¯ ( A ) the annihilator of A in the ring ℤ G ¯ , which is a two-sided ideal. Let R = ℤ G ¯ / Θ ℤ G ¯ A . A subgroup A can also be treated as an R -module. We give a criterion for the existence of an R -decomposition of G over A , i.e., the possibility of embedding G in a semidirect product G ¯ · D , where D is an R -module. It is also proved that an R -decomposition always exists in one important case.</description><identifier>ISSN: 0002-5232</identifier><identifier>EISSN: 1573-8302</identifier><identifier>DOI: 10.1007/s10469-016-9401-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abelian groups ; Algebra ; Analysis ; Decomposition ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Topological groups ; Uranium</subject><ispartof>Algebra and logic, 2016-09, Vol.55 (4), p.315-326</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-34bc180f0ad53f6a2c3f5556490af4fd9fc1a2c1e55207504d4b99a1d6f2de593</citedby><cites>FETCH-LOGICAL-c453t-34bc180f0ad53f6a2c3f5556490af4fd9fc1a2c1e55207504d4b99a1d6f2de593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10469-016-9401-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10469-016-9401-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Romanovskii, N. S.</creatorcontrib><title>Decomposition of a Group over an Abelian Normal Subgroup</title><title>Algebra and logic</title><addtitle>Algebra Logic</addtitle><description>Let a group G have an Abelian normal subgroup A ; put G ¯ = G/A and g ¯ = gA for g ∈ G . We can think of A as a right ℤ G ¯ -module and define the action of an element u = α 1 g ¯ 1 +…+ α n g ¯ n ∈ ℤ G ¯ on a ∈ A by a formula a u = a g 1 α 1 ·…· a g n α n ; here a g i = g i − 1 a g i . Denote by Θ ℤ G ¯ ( A ) the annihilator of A in the ring ℤ G ¯ , which is a two-sided ideal. Let R = ℤ G ¯ / Θ ℤ G ¯ A . A subgroup A can also be treated as an R -module. We give a criterion for the existence of an R -decomposition of G over A , i.e., the possibility of embedding G in a semidirect product G ¯ · D , where D is an R -module. It is also proved that an R -decomposition always exists in one important case.</description><subject>Abelian groups</subject><subject>Algebra</subject><subject>Analysis</subject><subject>Decomposition</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Topological groups</subject><subject>Uranium</subject><issn>0002-5232</issn><issn>1573-8302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd_gLeC586XX21zHFOnMPSgnkOaJqOjbWrSyvzvzaiHCUoOj7x8Pu-FL0LXGBYYIL8NGFgmUsBZKhjgdH-CZpjnNC0okFM0AwCSckLJOboIYRevIitghoo7o13bu1APtesSZxOVrL0b-8R9Gp-oLlmWpqljfXa-VU3yOpbbw_slOrOqCebqp87R-8P92-ox3bysn1bLTaoZp0NKWalxARZUxanNFNHUcs4zJkBZZithNY5NbDgnkHNgFSuFULjKLKkMF3SObqa5vXcfowmD3LnRd3GlxEUBBc0xO6K2qjGy7qwbvNJtHbRcMhE5QmkRqcUfVDyVaWvtOmPr2P8l4EnQ3oXgjZW9r1vlvyQGechdTrnLmLs85C730SGTEyLbbY0_-vC_0jf5sIMK</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Romanovskii, N. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Decomposition of a Group over an Abelian Normal Subgroup</title><author>Romanovskii, N. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-34bc180f0ad53f6a2c3f5556490af4fd9fc1a2c1e55207504d4b99a1d6f2de593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Abelian groups</topic><topic>Algebra</topic><topic>Analysis</topic><topic>Decomposition</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Topological groups</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romanovskii, N. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Algebra and logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romanovskii, N. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposition of a Group over an Abelian Normal Subgroup</atitle><jtitle>Algebra and logic</jtitle><stitle>Algebra Logic</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>55</volume><issue>4</issue><spage>315</spage><epage>326</epage><pages>315-326</pages><issn>0002-5232</issn><eissn>1573-8302</eissn><abstract>Let a group G have an Abelian normal subgroup A ; put G ¯ = G/A and g ¯ = gA for g ∈ G . We can think of A as a right ℤ G ¯ -module and define the action of an element u = α 1 g ¯ 1 +…+ α n g ¯ n ∈ ℤ G ¯ on a ∈ A by a formula a u = a g 1 α 1 ·…· a g n α n ; here a g i = g i − 1 a g i . Denote by Θ ℤ G ¯ ( A ) the annihilator of A in the ring ℤ G ¯ , which is a two-sided ideal. Let R = ℤ G ¯ / Θ ℤ G ¯ A . A subgroup A can also be treated as an R -module. We give a criterion for the existence of an R -decomposition of G over A , i.e., the possibility of embedding G in a semidirect product G ¯ · D , where D is an R -module. It is also proved that an R -decomposition always exists in one important case.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10469-016-9401-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-5232
ispartof Algebra and logic, 2016-09, Vol.55 (4), p.315-326
issn 0002-5232
1573-8302
language eng
recordid cdi_proquest_journals_1880837149
source SpringerLink Journals
subjects Abelian groups
Algebra
Analysis
Decomposition
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Topological groups
Uranium
title Decomposition of a Group over an Abelian Normal Subgroup
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposition%20of%20a%20Group%20over%20an%20Abelian%20Normal%20Subgroup&rft.jtitle=Algebra%20and%20logic&rft.au=Romanovskii,%20N.%20S.&rft.date=2016-09-01&rft.volume=55&rft.issue=4&rft.spage=315&rft.epage=326&rft.pages=315-326&rft.issn=0002-5232&rft.eissn=1573-8302&rft_id=info:doi/10.1007/s10469-016-9401-x&rft_dat=%3Cgale_proqu%3EA498802338%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880837149&rft_id=info:pmid/&rft_galeid=A498802338&rfr_iscdi=true