Decomposition of a Group over an Abelian Normal Subgroup
Let a group G have an Abelian normal subgroup A ; put G ¯ = G/A and g ¯ = gA for g ∈ G . We can think of A as a right ℤ G ¯ -module and define the action of an element u = α 1 g ¯ 1 +…+ α n g ¯ n ∈ ℤ G ¯ on a ∈ A by a formula a u = a g 1 α 1 ·…· a g n α n ; here a g i = g i − 1 a g i . Denote by Θ ℤ...
Gespeichert in:
Veröffentlicht in: | Algebra and logic 2016-09, Vol.55 (4), p.315-326 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let a group
G
have an Abelian normal subgroup
A
; put
G
¯
= G/A and
g
¯
=
gA
for
g
∈
G
. We can think of
A
as a right ℤ
G
¯
-module and define the action of an element
u
=
α
1
g
¯
1
+…+
α
n
g
¯
n
∈ ℤ
G
¯
on
a
∈
A
by a formula
a
u
=
a
g
1
α
1
·…·
a
g
n
α
n
; here
a
g
i
=
g
i
−
1
a
g
i
. Denote by
Θ
ℤ
G
¯
(
A
) the annihilator of
A
in the ring ℤ
G
¯
, which is a two-sided ideal. Let
R
=
ℤ
G
¯
/
Θ
ℤ
G
¯
A
. A subgroup
A
can also be treated as an
R
-module. We give a criterion for the existence of an
R
-decomposition of
G
over
A
, i.e., the possibility of embedding
G
in a semidirect product
G
¯
·
D
, where
D
is an
R
-module. It is also proved that an
R
-decomposition always exists in one important case. |
---|---|
ISSN: | 0002-5232 1573-8302 |
DOI: | 10.1007/s10469-016-9401-x |