A bigroupoid’s topology (or, Topologising the homotopy bigroupoid of a space)
The fundamental bigroupoid of a topological space is one way of capturing its homotopy 2-type. When the space is semilocally 2-connected, one can lift the construction to a bigroupoid internal to the category of topological spaces, as Brown and Danesh-Naruie lifted the fundamental groupoid to a topo...
Gespeichert in:
Veröffentlicht in: | Journal of homotopy and related structures 2016-12, Vol.11 (4), p.923-942 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fundamental bigroupoid of a topological space is one way of capturing its homotopy 2-type. When the space is semilocally 2-connected, one can lift the construction to a bigroupoid internal to the category of topological spaces, as Brown and Danesh-Naruie lifted the fundamental groupoid to a topological groupoid. For locally relatively contractible spaces the resulting topological bigroupoid is
locally trivial
in a way analogous to the case of the topologised fundamental groupoid. This is the published version of
arXiv:1302.7019
. |
---|---|
ISSN: | 2193-8407 1512-2891 |
DOI: | 10.1007/s40062-016-0160-0 |