Design,fabrication and kinematics of a bio-inspired robotic bat wing

The current work is oriented toward the development of a novel biologically inspired bat aerial robot with morphing wings. Based on the flight characteristics data of natural bats(Eptesicus fuscus), a novel four degrees of freedom robotic bat wing was developed to emulate the movements of bat wing....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2016-12, Vol.59 (12), p.1921-1930
Hauptverfasser: Yin, DongFu, Zhang, ZhiSheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current work is oriented toward the development of a novel biologically inspired bat aerial robot with morphing wings. Based on the flight characteristics data of natural bats(Eptesicus fuscus), a novel four degrees of freedom robotic bat wing was developed to emulate the movements of bat wing. The design, fabrication, programing and wind tunnel experiments of the robot bat wing are described in this paper. Based on this robotic wing, the influence of flap amplitude, wind speed, flight frequency, downstroke ratio and stroke plane angle as well as the contributions of flap, elbow, sweep and wrist motions on the aerodynamic force and mechanical power were studied and analyzed. Results of wind tunnel experiments validated that higher lift would bring greater power consumption, and the flap motion would generate the most force and need more energy expenditure compared with other motions of bat. The experimental results suggest that the flap and fold motions are indispensable to make a robotic bat wing that has a better flight performance. This study provides some implications and a better understanding for the future robotic bat.
ISSN:1674-7321
1869-1900
DOI:10.1007/s11431-016-0299-2