Vertical vibration of a large diameter pile embedded in inhomogeneous soil based on the Rayleigh-Love rod theory

The vertical vibration of a large diameter pile embedded in inhomogeneous soil with hysteretic type damping is investigated based on the 3D axisymmetric model. Firstly, the pile is assumed to be a Rayleigh-Love rod with the consideration of its transverse inertia effect. Following this assumption, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Zhejiang University. A. Science 2016-12, Vol.17 (12), p.974-988
Hauptverfasser: Li, Zhen-ya, Wang, Kui-hua, Wu, Wen-bing, Leo, Chin Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The vertical vibration of a large diameter pile embedded in inhomogeneous soil with hysteretic type damping is investigated based on the 3D axisymmetric model. Firstly, the pile is assumed to be a Rayleigh-Love rod with the consideration of its transverse inertia effect. Following this assumption, the pile-soil system is divided into several segments according to the stratification of the surrounding soil, and the dynamic interactions of the adjacent soil layers are simulated using the distributed Voigt model. Meanwhile, the surrounding soil is discretized into finite annular vertical zones to consider its radial inhomogeneity, and the force equilibrium and displacement coordination are satisfied at the interfaces of the adjacent soil zones and the interface of the pile-soil. Then, the analytical solution in the frequency domain and the semi-analytical solution in the time domain are obtained by solving the vibration governing equations of pile-soil system. Based on the solutions, a parametric analysis is conducted to investigate the influence of the transverse inertia effect on the dynamic response of the large diameter pile and its relationship with the pile parameters and the radial inhomogeneity of the surrounding soil. Finally, a comparison with the measured result and two other calculated results is presented to verify the effectiveness of the present solution.
ISSN:1673-565X
1862-1775
DOI:10.1631/jzus.A1500341