Knauf’s degree and monodromy in planar potential scattering
We consider Hamiltonian systems on ( T *ℝ 2 , dq ∧ dp ) defined by a Hamiltonian function H of the “classical” form H = p 2 /2 + V ( q ). A reasonable decay assumption V ( q ) → 0, ‖ q ‖ → ∞, allows one to compare a given distribution of initial conditions at t = −∞ with their final distribution at...
Gespeichert in:
Veröffentlicht in: | Regular & chaotic dynamics 2016-11, Vol.21 (6), p.697-706 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 706 |
---|---|
container_issue | 6 |
container_start_page | 697 |
container_title | Regular & chaotic dynamics |
container_volume | 21 |
creator | Martynchuk, Nikolay Waalkens, Holger |
description | We consider Hamiltonian systems on (
T
*ℝ
2
,
dq
∧
dp
) defined by a Hamiltonian function
H
of the “classical” form
H
=
p
2
/2 +
V
(
q
). A reasonable decay assumption
V
(
q
) → 0, ‖
q
‖ → ∞, allows one to compare a given distribution of initial conditions at
t
= −∞ with their final distribution at
t
= +∞. To describe this Knauf introduced a topological invariant deg(
E
), which, for a nontrapping energy
E
> 0, is given by the degree of the scattering map. For rotationally symmetric potentials
V
(
q
) =
W
(‖
q
‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg(
E
) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg(
E
), which appears when the nontrapping energy
E
goes from low to high values. |
doi_str_mv | 10.1134/S1560354716060095 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880815587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880815587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-11e258bab95ab4b4cba3248f8411081505c9da3f896f5d221088eb2aa069bc213</originalsourceid><addsrcrecordid>eNp1ULFOwzAUtBBIlMIHsFliDvg5ceoMDKiCgqjEAMzWc-JUqRI72M7Qjd_g9_gSEpWhEmJ6p9PdPd0RcgnsGiDNbl5B5CwV2QJyljNWiCMym6hk4o4P8Ck5C2HLGAi5YDNy-2xxqL8_vwKtzMYbQ9FWtHPWVd51O9pY2rdo0dPeRWNjgy0NJcZofGM35-SkxjaYi987J-8P92_Lx2T9snpa3q2TMhVFTAAMF1KjLgTqTGelxpRnspYZAJMgmCiLCtNaFnktKs5HUhrNEVle6JJDOidX-9zeu4_BhKi2bvB2fKlAyilibDOqYK8qvQvBm1r1vunQ7xQwNa2k_qw0evjeE_qpkPEHyf-afgAY4mjl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880815587</pqid></control><display><type>article</type><title>Knauf’s degree and monodromy in planar potential scattering</title><source>SpringerNature Journals</source><creator>Martynchuk, Nikolay ; Waalkens, Holger</creator><creatorcontrib>Martynchuk, Nikolay ; Waalkens, Holger</creatorcontrib><description>We consider Hamiltonian systems on (
T
*ℝ
2
,
dq
∧
dp
) defined by a Hamiltonian function
H
of the “classical” form
H
=
p
2
/2 +
V
(
q
). A reasonable decay assumption
V
(
q
) → 0, ‖
q
‖ → ∞, allows one to compare a given distribution of initial conditions at
t
= −∞ with their final distribution at
t
= +∞. To describe this Knauf introduced a topological invariant deg(
E
), which, for a nontrapping energy
E
> 0, is given by the degree of the scattering map. For rotationally symmetric potentials
V
(
q
) =
W
(‖
q
‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg(
E
) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg(
E
), which appears when the nontrapping energy
E
goes from low to high values.</description><identifier>ISSN: 1560-3547</identifier><identifier>EISSN: 1560-3547</identifier><identifier>EISSN: 1468-4845</identifier><identifier>DOI: 10.1134/S1560354716060095</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Dynamical Systems and Ergodic Theory ; Hamiltonian functions ; Initial conditions ; Invariants ; Mathematics ; Mathematics and Statistics ; On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1 ; Scattering</subject><ispartof>Regular & chaotic dynamics, 2016-11, Vol.21 (6), p.697-706</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-11e258bab95ab4b4cba3248f8411081505c9da3f896f5d221088eb2aa069bc213</citedby><cites>FETCH-LOGICAL-c359t-11e258bab95ab4b4cba3248f8411081505c9da3f896f5d221088eb2aa069bc213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1560354716060095$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1560354716060095$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Martynchuk, Nikolay</creatorcontrib><creatorcontrib>Waalkens, Holger</creatorcontrib><title>Knauf’s degree and monodromy in planar potential scattering</title><title>Regular & chaotic dynamics</title><addtitle>Regul. Chaot. Dyn</addtitle><description>We consider Hamiltonian systems on (
T
*ℝ
2
,
dq
∧
dp
) defined by a Hamiltonian function
H
of the “classical” form
H
=
p
2
/2 +
V
(
q
). A reasonable decay assumption
V
(
q
) → 0, ‖
q
‖ → ∞, allows one to compare a given distribution of initial conditions at
t
= −∞ with their final distribution at
t
= +∞. To describe this Knauf introduced a topological invariant deg(
E
), which, for a nontrapping energy
E
> 0, is given by the degree of the scattering map. For rotationally symmetric potentials
V
(
q
) =
W
(‖
q
‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg(
E
) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg(
E
), which appears when the nontrapping energy
E
goes from low to high values.</description><subject>Dynamical Systems and Ergodic Theory</subject><subject>Hamiltonian functions</subject><subject>Initial conditions</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1</subject><subject>Scattering</subject><issn>1560-3547</issn><issn>1560-3547</issn><issn>1468-4845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1ULFOwzAUtBBIlMIHsFliDvg5ceoMDKiCgqjEAMzWc-JUqRI72M7Qjd_g9_gSEpWhEmJ6p9PdPd0RcgnsGiDNbl5B5CwV2QJyljNWiCMym6hk4o4P8Ck5C2HLGAi5YDNy-2xxqL8_vwKtzMYbQ9FWtHPWVd51O9pY2rdo0dPeRWNjgy0NJcZofGM35-SkxjaYi987J-8P92_Lx2T9snpa3q2TMhVFTAAMF1KjLgTqTGelxpRnspYZAJMgmCiLCtNaFnktKs5HUhrNEVle6JJDOidX-9zeu4_BhKi2bvB2fKlAyilibDOqYK8qvQvBm1r1vunQ7xQwNa2k_qw0evjeE_qpkPEHyf-afgAY4mjl</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Martynchuk, Nikolay</creator><creator>Waalkens, Holger</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161101</creationdate><title>Knauf’s degree and monodromy in planar potential scattering</title><author>Martynchuk, Nikolay ; Waalkens, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-11e258bab95ab4b4cba3248f8411081505c9da3f896f5d221088eb2aa069bc213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Dynamical Systems and Ergodic Theory</topic><topic>Hamiltonian functions</topic><topic>Initial conditions</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1</topic><topic>Scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martynchuk, Nikolay</creatorcontrib><creatorcontrib>Waalkens, Holger</creatorcontrib><collection>CrossRef</collection><jtitle>Regular & chaotic dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martynchuk, Nikolay</au><au>Waalkens, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knauf’s degree and monodromy in planar potential scattering</atitle><jtitle>Regular & chaotic dynamics</jtitle><stitle>Regul. Chaot. Dyn</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>21</volume><issue>6</issue><spage>697</spage><epage>706</epage><pages>697-706</pages><issn>1560-3547</issn><eissn>1560-3547</eissn><eissn>1468-4845</eissn><abstract>We consider Hamiltonian systems on (
T
*ℝ
2
,
dq
∧
dp
) defined by a Hamiltonian function
H
of the “classical” form
H
=
p
2
/2 +
V
(
q
). A reasonable decay assumption
V
(
q
) → 0, ‖
q
‖ → ∞, allows one to compare a given distribution of initial conditions at
t
= −∞ with their final distribution at
t
= +∞. To describe this Knauf introduced a topological invariant deg(
E
), which, for a nontrapping energy
E
> 0, is given by the degree of the scattering map. For rotationally symmetric potentials
V
(
q
) =
W
(‖
q
‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg(
E
) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg(
E
), which appears when the nontrapping energy
E
goes from low to high values.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1560354716060095</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1560-3547 |
ispartof | Regular & chaotic dynamics, 2016-11, Vol.21 (6), p.697-706 |
issn | 1560-3547 1560-3547 1468-4845 |
language | eng |
recordid | cdi_proquest_journals_1880815587 |
source | SpringerNature Journals |
subjects | Dynamical Systems and Ergodic Theory Hamiltonian functions Initial conditions Invariants Mathematics Mathematics and Statistics On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1 Scattering |
title | Knauf’s degree and monodromy in planar potential scattering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knauf%E2%80%99s%20degree%20and%20monodromy%20in%20planar%20potential%20scattering&rft.jtitle=Regular%20&%20chaotic%20dynamics&rft.au=Martynchuk,%20Nikolay&rft.date=2016-11-01&rft.volume=21&rft.issue=6&rft.spage=697&rft.epage=706&rft.pages=697-706&rft.issn=1560-3547&rft.eissn=1560-3547&rft_id=info:doi/10.1134/S1560354716060095&rft_dat=%3Cproquest_cross%3E1880815587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880815587&rft_id=info:pmid/&rfr_iscdi=true |