Knauf’s degree and monodromy in planar potential scattering

We consider Hamiltonian systems on ( T *ℝ 2 , dq ∧ dp ) defined by a Hamiltonian function H of the “classical” form H = p 2 /2 + V ( q ). A reasonable decay assumption V ( q ) → 0, ‖ q ‖ → ∞, allows one to compare a given distribution of initial conditions at t = −∞ with their final distribution at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regular & chaotic dynamics 2016-11, Vol.21 (6), p.697-706
Hauptverfasser: Martynchuk, Nikolay, Waalkens, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 706
container_issue 6
container_start_page 697
container_title Regular & chaotic dynamics
container_volume 21
creator Martynchuk, Nikolay
Waalkens, Holger
description We consider Hamiltonian systems on ( T *ℝ 2 , dq ∧ dp ) defined by a Hamiltonian function H of the “classical” form H = p 2 /2 + V ( q ). A reasonable decay assumption V ( q ) → 0, ‖ q ‖ → ∞, allows one to compare a given distribution of initial conditions at t = −∞ with their final distribution at t = +∞. To describe this Knauf introduced a topological invariant deg( E ), which, for a nontrapping energy E > 0, is given by the degree of the scattering map. For rotationally symmetric potentials V ( q ) = W (‖ q ‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg( E ) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg( E ), which appears when the nontrapping energy E goes from low to high values.
doi_str_mv 10.1134/S1560354716060095
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880815587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880815587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-11e258bab95ab4b4cba3248f8411081505c9da3f896f5d221088eb2aa069bc213</originalsourceid><addsrcrecordid>eNp1ULFOwzAUtBBIlMIHsFliDvg5ceoMDKiCgqjEAMzWc-JUqRI72M7Qjd_g9_gSEpWhEmJ6p9PdPd0RcgnsGiDNbl5B5CwV2QJyljNWiCMym6hk4o4P8Ck5C2HLGAi5YDNy-2xxqL8_vwKtzMYbQ9FWtHPWVd51O9pY2rdo0dPeRWNjgy0NJcZofGM35-SkxjaYi987J-8P92_Lx2T9snpa3q2TMhVFTAAMF1KjLgTqTGelxpRnspYZAJMgmCiLCtNaFnktKs5HUhrNEVle6JJDOidX-9zeu4_BhKi2bvB2fKlAyilibDOqYK8qvQvBm1r1vunQ7xQwNa2k_qw0evjeE_qpkPEHyf-afgAY4mjl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880815587</pqid></control><display><type>article</type><title>Knauf’s degree and monodromy in planar potential scattering</title><source>SpringerNature Journals</source><creator>Martynchuk, Nikolay ; Waalkens, Holger</creator><creatorcontrib>Martynchuk, Nikolay ; Waalkens, Holger</creatorcontrib><description>We consider Hamiltonian systems on ( T *ℝ 2 , dq ∧ dp ) defined by a Hamiltonian function H of the “classical” form H = p 2 /2 + V ( q ). A reasonable decay assumption V ( q ) → 0, ‖ q ‖ → ∞, allows one to compare a given distribution of initial conditions at t = −∞ with their final distribution at t = +∞. To describe this Knauf introduced a topological invariant deg( E ), which, for a nontrapping energy E &gt; 0, is given by the degree of the scattering map. For rotationally symmetric potentials V ( q ) = W (‖ q ‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg( E ) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg( E ), which appears when the nontrapping energy E goes from low to high values.</description><identifier>ISSN: 1560-3547</identifier><identifier>EISSN: 1560-3547</identifier><identifier>EISSN: 1468-4845</identifier><identifier>DOI: 10.1134/S1560354716060095</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Dynamical Systems and Ergodic Theory ; Hamiltonian functions ; Initial conditions ; Invariants ; Mathematics ; Mathematics and Statistics ; On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1 ; Scattering</subject><ispartof>Regular &amp; chaotic dynamics, 2016-11, Vol.21 (6), p.697-706</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-11e258bab95ab4b4cba3248f8411081505c9da3f896f5d221088eb2aa069bc213</citedby><cites>FETCH-LOGICAL-c359t-11e258bab95ab4b4cba3248f8411081505c9da3f896f5d221088eb2aa069bc213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1560354716060095$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1560354716060095$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Martynchuk, Nikolay</creatorcontrib><creatorcontrib>Waalkens, Holger</creatorcontrib><title>Knauf’s degree and monodromy in planar potential scattering</title><title>Regular &amp; chaotic dynamics</title><addtitle>Regul. Chaot. Dyn</addtitle><description>We consider Hamiltonian systems on ( T *ℝ 2 , dq ∧ dp ) defined by a Hamiltonian function H of the “classical” form H = p 2 /2 + V ( q ). A reasonable decay assumption V ( q ) → 0, ‖ q ‖ → ∞, allows one to compare a given distribution of initial conditions at t = −∞ with their final distribution at t = +∞. To describe this Knauf introduced a topological invariant deg( E ), which, for a nontrapping energy E &gt; 0, is given by the degree of the scattering map. For rotationally symmetric potentials V ( q ) = W (‖ q ‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg( E ) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg( E ), which appears when the nontrapping energy E goes from low to high values.</description><subject>Dynamical Systems and Ergodic Theory</subject><subject>Hamiltonian functions</subject><subject>Initial conditions</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1</subject><subject>Scattering</subject><issn>1560-3547</issn><issn>1560-3547</issn><issn>1468-4845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1ULFOwzAUtBBIlMIHsFliDvg5ceoMDKiCgqjEAMzWc-JUqRI72M7Qjd_g9_gSEpWhEmJ6p9PdPd0RcgnsGiDNbl5B5CwV2QJyljNWiCMym6hk4o4P8Ck5C2HLGAi5YDNy-2xxqL8_vwKtzMYbQ9FWtHPWVd51O9pY2rdo0dPeRWNjgy0NJcZofGM35-SkxjaYi987J-8P92_Lx2T9snpa3q2TMhVFTAAMF1KjLgTqTGelxpRnspYZAJMgmCiLCtNaFnktKs5HUhrNEVle6JJDOidX-9zeu4_BhKi2bvB2fKlAyilibDOqYK8qvQvBm1r1vunQ7xQwNa2k_qw0evjeE_qpkPEHyf-afgAY4mjl</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Martynchuk, Nikolay</creator><creator>Waalkens, Holger</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161101</creationdate><title>Knauf’s degree and monodromy in planar potential scattering</title><author>Martynchuk, Nikolay ; Waalkens, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-11e258bab95ab4b4cba3248f8411081505c9da3f896f5d221088eb2aa069bc213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Dynamical Systems and Ergodic Theory</topic><topic>Hamiltonian functions</topic><topic>Initial conditions</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1</topic><topic>Scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martynchuk, Nikolay</creatorcontrib><creatorcontrib>Waalkens, Holger</creatorcontrib><collection>CrossRef</collection><jtitle>Regular &amp; chaotic dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martynchuk, Nikolay</au><au>Waalkens, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knauf’s degree and monodromy in planar potential scattering</atitle><jtitle>Regular &amp; chaotic dynamics</jtitle><stitle>Regul. Chaot. Dyn</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>21</volume><issue>6</issue><spage>697</spage><epage>706</epage><pages>697-706</pages><issn>1560-3547</issn><eissn>1560-3547</eissn><eissn>1468-4845</eissn><abstract>We consider Hamiltonian systems on ( T *ℝ 2 , dq ∧ dp ) defined by a Hamiltonian function H of the “classical” form H = p 2 /2 + V ( q ). A reasonable decay assumption V ( q ) → 0, ‖ q ‖ → ∞, allows one to compare a given distribution of initial conditions at t = −∞ with their final distribution at t = +∞. To describe this Knauf introduced a topological invariant deg( E ), which, for a nontrapping energy E &gt; 0, is given by the degree of the scattering map. For rotationally symmetric potentials V ( q ) = W (‖ q ‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg( E ) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg( E ), which appears when the nontrapping energy E goes from low to high values.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1560354716060095</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1560-3547
ispartof Regular & chaotic dynamics, 2016-11, Vol.21 (6), p.697-706
issn 1560-3547
1560-3547
1468-4845
language eng
recordid cdi_proquest_journals_1880815587
source SpringerNature Journals
subjects Dynamical Systems and Ergodic Theory
Hamiltonian functions
Initial conditions
Invariants
Mathematics
Mathematics and Statistics
On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1
Scattering
title Knauf’s degree and monodromy in planar potential scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knauf%E2%80%99s%20degree%20and%20monodromy%20in%20planar%20potential%20scattering&rft.jtitle=Regular%20&%20chaotic%20dynamics&rft.au=Martynchuk,%20Nikolay&rft.date=2016-11-01&rft.volume=21&rft.issue=6&rft.spage=697&rft.epage=706&rft.pages=697-706&rft.issn=1560-3547&rft.eissn=1560-3547&rft_id=info:doi/10.1134/S1560354716060095&rft_dat=%3Cproquest_cross%3E1880815587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880815587&rft_id=info:pmid/&rfr_iscdi=true