Knauf’s degree and monodromy in planar potential scattering

We consider Hamiltonian systems on ( T *ℝ 2 , dq ∧ dp ) defined by a Hamiltonian function H of the “classical” form H = p 2 /2 + V ( q ). A reasonable decay assumption V ( q ) → 0, ‖ q ‖ → ∞, allows one to compare a given distribution of initial conditions at t = −∞ with their final distribution at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regular & chaotic dynamics 2016-11, Vol.21 (6), p.697-706
Hauptverfasser: Martynchuk, Nikolay, Waalkens, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider Hamiltonian systems on ( T *ℝ 2 , dq ∧ dp ) defined by a Hamiltonian function H of the “classical” form H = p 2 /2 + V ( q ). A reasonable decay assumption V ( q ) → 0, ‖ q ‖ → ∞, allows one to compare a given distribution of initial conditions at t = −∞ with their final distribution at t = +∞. To describe this Knauf introduced a topological invariant deg( E ), which, for a nontrapping energy E > 0, is given by the degree of the scattering map. For rotationally symmetric potentials V ( q ) = W (‖ q ‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg( E ) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg( E ), which appears when the nontrapping energy E goes from low to high values.
ISSN:1560-3547
1560-3547
1468-4845
DOI:10.1134/S1560354716060095