On integral Cayley sum graphs

Let S be a subset of a finite abelian group G . The Cayley sum graph Cay + ( G, S ) of G with respect to S is a graph whose vertex set is G and two vertices g and h are joined by an edge if and only if g + h ∈ S . We call a finite abelian group G a Cayley sum integral group if for every subset S of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2016-12, Vol.47 (4), p.583-601
Hauptverfasser: Amooshahi, Marzieh, Taeri, Bijan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let S be a subset of a finite abelian group G . The Cayley sum graph Cay + ( G, S ) of G with respect to S is a graph whose vertex set is G and two vertices g and h are joined by an edge if and only if g + h ∈ S . We call a finite abelian group G a Cayley sum integral group if for every subset S of G , Cay + ( G, S ) is integral i.e., all eigenvalues of its adjacency matrix are integers. In this paper, we prove that all Cayley sum integral groups are represented by Z 3 and Zn 2 n , n ≥ 1, where Z k is the group of integers modulo k . Also, we classify simple connected cubic integral Cayley sum graphs.
ISSN:0019-5588
0975-7465
DOI:10.1007/s13226-016-0204-5