On integral Cayley sum graphs
Let S be a subset of a finite abelian group G . The Cayley sum graph Cay + ( G, S ) of G with respect to S is a graph whose vertex set is G and two vertices g and h are joined by an edge if and only if g + h ∈ S . We call a finite abelian group G a Cayley sum integral group if for every subset S of...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2016-12, Vol.47 (4), p.583-601 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
S
be a subset of a finite abelian group
G
. The Cayley sum graph Cay
+
(
G, S
) of
G
with respect to
S
is a graph whose vertex set is
G
and two vertices
g
and
h
are joined by an edge if and only if
g
+
h
∈
S
. We call a finite abelian group G a Cayley sum integral group if for every subset
S
of
G
, Cay
+
(
G, S
) is integral i.e., all eigenvalues of its adjacency matrix are integers. In this paper, we prove that all Cayley sum integral groups are represented by Z
3
and Zn
2
n
,
n
≥ 1, where Z
k
is the group of integers modulo
k
. Also, we classify simple connected cubic integral Cayley sum graphs. |
---|---|
ISSN: | 0019-5588 0975-7465 |
DOI: | 10.1007/s13226-016-0204-5 |