Two weight inequalities for bilinear forms

Let 1 ≤ p 0 < p , q < q 0 ≤ ∞ . Given a pair of weights ( w , σ ) and a sparse family S , we study the two weight inequality for the following bi-sublinear form B ( f , g ) = ∑ Q ∈ S ⟨ | f | p 0 ⟩ Q 1 p 0 ⟨ | g | q 0 ′ ⟩ Q 1 q 0 ′ λ Q ≤ N ‖ f ‖ L p ( w ) ‖ g ‖ L q ′ ( σ ) . When λ Q = | Q | an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Collectanea mathematica (Barcelona) 2017, Vol.68 (1), p.129-144
1. Verfasser: Li, Kangwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let 1 ≤ p 0 < p , q < q 0 ≤ ∞ . Given a pair of weights ( w , σ ) and a sparse family S , we study the two weight inequality for the following bi-sublinear form B ( f , g ) = ∑ Q ∈ S ⟨ | f | p 0 ⟩ Q 1 p 0 ⟨ | g | q 0 ′ ⟩ Q 1 q 0 ′ λ Q ≤ N ‖ f ‖ L p ( w ) ‖ g ‖ L q ′ ( σ ) . When λ Q = | Q | and p = q , Bernicot, Frey and Petermichl showed that B ( f ,  g ) dominates ⟨ T f , g ⟩ for a large class of singular non-kernel operators. We give a characterization for the above inequality and then obtain the mixed A p - A ∞ estimates and the corresponding entropy bounds when λ Q = | Q | and p = q . We also propose a new conjecture which implies both the one supremum conjecture and the separated bump conjecture.
ISSN:0010-0757
2038-4815
DOI:10.1007/s13348-016-0182-2