Two weight inequalities for bilinear forms
Let 1 ≤ p 0 < p , q < q 0 ≤ ∞ . Given a pair of weights ( w , σ ) and a sparse family S , we study the two weight inequality for the following bi-sublinear form B ( f , g ) = ∑ Q ∈ S ⟨ | f | p 0 ⟩ Q 1 p 0 ⟨ | g | q 0 ′ ⟩ Q 1 q 0 ′ λ Q ≤ N ‖ f ‖ L p ( w ) ‖ g ‖ L q ′ ( σ ) . When λ Q = | Q | an...
Gespeichert in:
Veröffentlicht in: | Collectanea mathematica (Barcelona) 2017, Vol.68 (1), p.129-144 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
1
≤
p
0
<
p
,
q
<
q
0
≤
∞
. Given a pair of weights
(
w
,
σ
)
and a sparse family
S
, we study the two weight inequality for the following bi-sublinear form
B
(
f
,
g
)
=
∑
Q
∈
S
⟨
|
f
|
p
0
⟩
Q
1
p
0
⟨
|
g
|
q
0
′
⟩
Q
1
q
0
′
λ
Q
≤
N
‖
f
‖
L
p
(
w
)
‖
g
‖
L
q
′
(
σ
)
.
When
λ
Q
=
|
Q
|
and
p
=
q
, Bernicot, Frey and Petermichl showed that
B
(
f
,
g
) dominates
⟨
T
f
,
g
⟩
for a large class of singular non-kernel operators. We give a characterization for the above inequality and then obtain the mixed
A
p
-
A
∞
estimates and the corresponding entropy bounds when
λ
Q
=
|
Q
|
and
p
=
q
. We also propose a new conjecture which implies both the one supremum conjecture and the separated bump conjecture. |
---|---|
ISSN: | 0010-0757 2038-4815 |
DOI: | 10.1007/s13348-016-0182-2 |