Estimates for the norms of monotone operators on weighted Orlicz–Lorentz classes
A monotone operator P mapping the Orlicz–Lorentz class to an ideal space is considered. The Orlicz–Lorentz class is the cone of measurable functions on R + =(0, ∞) whose decreasing rearrangements with respect to the Lebesgue measure on R + belong to the weighted Orlicz space L Φ,ν . Reduction theore...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2016-11, Vol.94 (3), p.627-631 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A monotone operator
P
mapping the Orlicz–Lorentz class to an ideal space is considered. The Orlicz–Lorentz class is the cone of measurable functions on
R
+
=(0, ∞) whose decreasing rearrangements with respect to the Lebesgue measure on
R
+
belong to the weighted Orlicz space
L
Φ,ν
. Reduction theorems are proved, which make it possible to reduce estimates of the norm of the operator
P
: Λ
Φ,ν
→
Y
to those of the norm of its restriction to the cone of nonnegative step functions in
L
Φ,ν
. The application of these results to the identity operator from Λ
Φ,ν
to the weighted Lebesgue space
Y
=
L
1
(
R
+
;
g
) gives exact descriptions of associated norms for Λ
Φ,ν
. |
---|---|
ISSN: | 1064-5624 1531-8362 |
DOI: | 10.1134/S1064562416060065 |