On the higher order exterior and interior Whitehead products
We extend the notion of the exterior Whitehead product for maps α i : Σ A i → X i for i = 1 , … , n , where Σ A i is the reduced suspension of A i and then, for the interior product with X i = J m i ( X ) , the m i th-stage of the James construction J ( X ) as well. The main result stated in Theorem...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2017, Vol.152 (1-2), p.167-188 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the notion of the exterior Whitehead product for maps
α
i
:
Σ
A
i
→
X
i
for
i
=
1
,
…
,
n
, where
Σ
A
i
is the reduced suspension of
A
i
and then, for the interior product with
X
i
=
J
m
i
(
X
)
, the
m
i
th-stage of the James construction
J
(
X
) as well. The main result stated in Theorem 4.10 generalizes (Hardie in Q J Math Oxford Ser 12(2):196–204,
1961
, Theorem 1.10) and concerns to the Hopf invariant of the generalized Hopf construction. We close the paper applying Gray’s construction
∘
(called the Theriault product) to a sequence
X
1
,
…
,
X
n
of simply connected co-
H
-spaces to obtain a higher Gray–Whitehead product map
w
n
:
Σ
n
-
2
(
X
1
∘
⋯
∘
X
n
)
→
T
1
(
X
1
,
…
,
X
n
)
,
where
T
1
(
X
1
,
…
,
X
n
)
is the fat wedge of
X
1
,
…
,
X
n
. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-016-0857-8 |