Functions that are Lipschitz in the small
Let X and Y be metric spaces. A function f : X → Y is said to be Lipschitz in the small if there are r > 0 and K < ∞ so that d ( f ( u ) , f ( v ) ) ≤ K d ( u , v ) for any u , v ∈ X with d ( u , v ) ≤ r . We find necessary and sufficient conditions on a subset A of X such that f | A is Lipsch...
Gespeichert in:
Veröffentlicht in: | Revista matemática complutense 2017, Vol.30 (1), p.25-34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
and
Y
be metric spaces. A function
f
:
X
→
Y
is said to be
Lipschitz in the small
if there are
r
>
0
and
K
<
∞
so that
d
(
f
(
u
)
,
f
(
v
)
)
≤
K
d
(
u
,
v
)
for any
u
,
v
∈
X
with
d
(
u
,
v
)
≤
r
. We find necessary and sufficient conditions on a subset
A
of
X
such that
f
|
A
is Lipschitz for every function
f
that is Lipschitz in the small on
X
. We also find necessary and sufficient conditions on
X
for
*
L
S
X
to be linearly order isomorphic to
Lip
(
Y
)
for some metric space
Y
. |
---|---|
ISSN: | 1139-1138 1988-2807 |
DOI: | 10.1007/s13163-016-0205-2 |