Functions that are Lipschitz in the small

Let X and Y be metric spaces. A function f : X → Y is said to be Lipschitz in the small if there are r > 0 and K < ∞ so that d ( f ( u ) , f ( v ) ) ≤ K d ( u , v ) for any u , v ∈ X with d ( u , v ) ≤ r . We find necessary and sufficient conditions on a subset A of X such that f | A is Lipsch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática complutense 2017, Vol.30 (1), p.25-34
Hauptverfasser: Leung, Denny H., Tang, Wee-Kee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X and Y be metric spaces. A function f : X → Y is said to be Lipschitz in the small if there are r > 0 and K < ∞ so that d ( f ( u ) , f ( v ) ) ≤ K d ( u , v ) for any u , v ∈ X with d ( u , v ) ≤ r . We find necessary and sufficient conditions on a subset A of X such that f | A is Lipschitz for every function f that is Lipschitz in the small on X . We also find necessary and sufficient conditions on X for * L S X to be linearly order isomorphic to Lip ( Y ) for some metric space Y .
ISSN:1139-1138
1988-2807
DOI:10.1007/s13163-016-0205-2