On quiver Grassmannians and orbit closures for representation-finite algebras
We show that Auslander algebras have a unique tilting and cotilting module which is generated and cogenerated by a projective–injective; its endomorphism ring is called the projective quotient algebra. For any representation-finite algebra, we use the projective quotient algebra to construct desingu...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2017-02, Vol.285 (1-2), p.367-395 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that Auslander algebras have a unique tilting and cotilting module which is generated and cogenerated by a projective–injective; its endomorphism ring is called the projective quotient algebra. For any representation-finite algebra, we use the projective quotient algebra to construct desingularizations of quiver Grassmannians, orbit closures in representation varieties, and their desingularizations. This generalizes results of Cerulli Irelli, Feigin and Reineke. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-016-1712-z |