Birational rigidity of complete intersections

We prove that every smooth complete intersection X = X d 1 , … , d s ⊂ P ∑ i = 1 s d i defined by s hypersurfaces of degree d 1 , … , d s is birationally superrigid if 5 s + 1 ≤ 2 ( ∑ i = 1 s d i + 1 ) ∏ i = 1 s d i . In particular, X is non-rational and Bir ( X ) = Aut ( X ) . We also prove biratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2017-02, Vol.285 (1-2), p.479-492
1. Verfasser: Suzuki, Fumiaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that every smooth complete intersection X = X d 1 , … , d s ⊂ P ∑ i = 1 s d i defined by s hypersurfaces of degree d 1 , … , d s is birationally superrigid if 5 s + 1 ≤ 2 ( ∑ i = 1 s d i + 1 ) ∏ i = 1 s d i . In particular, X is non-rational and Bir ( X ) = Aut ( X ) . We also prove birational superrigidity of singular complete intersections with similar numerical condition. These extend the results proved by Tommaso de Fernex.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-016-1717-7