Birational rigidity of complete intersections
We prove that every smooth complete intersection X = X d 1 , … , d s ⊂ P ∑ i = 1 s d i defined by s hypersurfaces of degree d 1 , … , d s is birationally superrigid if 5 s + 1 ≤ 2 ( ∑ i = 1 s d i + 1 ) ∏ i = 1 s d i . In particular, X is non-rational and Bir ( X ) = Aut ( X ) . We also prove biratio...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2017-02, Vol.285 (1-2), p.479-492 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that every smooth complete intersection
X
=
X
d
1
,
…
,
d
s
⊂
P
∑
i
=
1
s
d
i
defined by
s
hypersurfaces of degree
d
1
,
…
,
d
s
is birationally superrigid if
5
s
+
1
≤
2
(
∑
i
=
1
s
d
i
+
1
)
∏
i
=
1
s
d
i
. In particular,
X
is non-rational and
Bir
(
X
)
=
Aut
(
X
)
. We also prove birational superrigidity of singular complete intersections with similar numerical condition. These extend the results proved by Tommaso de Fernex. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-016-1717-7 |