Construction of a (k, n)-visual cryptography scheme
In this paper we give an explicit construction of basis matrices for a ( k , n )-visual cryptography scheme ( k , n ) - VCS for integers k and n with 2 ≤ k ≤ n . In balanced VCS every set of participants with equal cardinality has same relative contrast. The VCS constructed in this paper is a balan...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2017-03, Vol.82 (3), p.629-645 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we give an explicit construction of basis matrices for a (
k
,
n
)-visual cryptography scheme
(
k
,
n
)
-
VCS
for integers
k
and
n
with
2
≤
k
≤
n
. In balanced VCS every set of participants with equal cardinality has same relative contrast. The VCS constructed in this paper is a balanced
(
k
,
n
)
-
VCS
for general
k
. Also we obtain a formula for pixel expansion and relative contrast. We also prove that our construction gives optimal contrast and minimum pixel expansion when
k
=
n
and
n
-
1
. |
---|---|
ISSN: | 0925-1022 1573-7586 |
DOI: | 10.1007/s10623-016-0181-z |