Lego-like spheres and tori
Given a connected surface F 2 with Euler characteristic χ and three integers b > a ≥ 1 < k , an ( { a , b } ; k ) - F 2 is a F 2 -embedded graph, having vertices of degree only k and only a - and b -gonal faces. The main case are (geometric) fullerenes (5, 6; 3)- S 2 . By p a , p b we denote t...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical chemistry 2017-03, Vol.55 (3), p.752-798 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a connected surface
F
2
with Euler characteristic
χ
and three integers
b
>
a
≥
1
<
k
, an
(
{
a
,
b
}
;
k
)
-
F
2
is a
F
2
-embedded graph, having vertices of degree only
k
and only
a
- and
b
-gonal faces. The main case are (geometric) fullerenes (5, 6; 3)-
S
2
. By
p
a
,
p
b
we denote the number of
a
-gonal,
b
-gonal faces. Call an
(
{
a
,
b
}
;
k
)
-map
lego-admissible
if either
p
b
p
a
, or
p
a
p
b
is integer. Call it
lego-like
if it is either
a
b
f
-
lego map
, or
a
f
b
-
lego map
, i.e., the face-set is partitioned into
min
(
p
a
,
p
b
)
isomorphic clusters,
legos
, consisting either one
a
-gon and
f
=
p
b
p
a
b
-gons, or, respectively,
f
=
p
a
p
b
a
-gons and one
b
-gon; the case
f
=
1
we denote also by
ab
. Call a
(
{
a
,
b
}
;
k
)
-map
elliptic
,
parabolic
or
hyperbolic
if the
curvature
κ
b
=
1
+
b
k
-
b
2
of
b
-gons is positive, zero or negative, respectively. There are 14 lego-like elliptic
(
{
a
,
b
}
;
k
)
-
S
2
with
(
a
,
b
)
≠
(
1
,
2
)
. No
(
{
1
,
3
}
;
6
)
-
S
2
is lego-admissible. For other 7 families of parabolic
(
{
a
,
b
}
;
k
)
-
S
2
, each lego-admissible sphere with
p
a
≤
p
b
is
a
f
b
and an infinity (by
Goldberg–Coxeter operation
) of
a
b
f
-spheres exist. The number of hyperbolic
a
b
f
(
{
a
,
b
}
;
k
)
-
S
2
with
(
a
,
b
)
≠
(
1
,
3
)
is finite. Such
a
f
b
-spheres with
a
≥
3
have
(
a
,
k
)
=
(
3
,
4
)
,
(
3
,
5
)
,
(
4
,
3
)
,
(
5
,
3
)
or (3, 3); their number is finite for each
b
, but infinite for each of 5 cases (
a
,
k
). Any lego-admissible
(
{
a
,
b
}
;
k
)
-
S
2
with
p
b
=
2
≤
a
is
a
f
b
. We list, explicitly or by parameters, lego-admissible
(
{
a
,
b
}
;
k
)
-maps among: hyperbolic spheres, spheres with
a
∈
{
1
,
2
}
, spheres with
p
b
∈
{
2
,
p
a
2
}
, Goldberg–Coxeter’s spheres and
(
{
a
,
b
}
;
k
)
-tori. We present extensive computer search of lego-like spheres: 7 parabolic (
p
b
-dependent) families, basic examples of all 5 hyperbolic
a
f
b
(
b
-dependent) families with
a
≥
3
, and lego-like
(
{
a
,
b
}
;
3
)
-tori. |
---|---|
ISSN: | 0259-9791 1572-8897 |
DOI: | 10.1007/s10910-016-0706-8 |