Counting and equidistribution in Heisenberg groups
We strongly develop the relationship between complex hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on complex hyperbolic spaces, especially in dimension 2. We prove a Mertens formula for the integer points over a quadra...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2017-02, Vol.367 (1-2), p.81-119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We strongly develop the relationship between complex hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on complex hyperbolic spaces, especially in dimension 2. We prove a Mertens formula for the integer points over a quadratic imaginary number fields
K
in the light cone of Hermitian forms, as well as an equidistribution theorem of the set of rational points over
K
in Heisenberg groups. We give a counting formula for the cubic points over
K
in the complex projective plane whose Galois conjugates are orthogonal and isotropic for a given Hermitian form over
K
, and a counting and equidistribution result for arithmetic chains in the Heisenberg group when their Cygan diameter tends to 0. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-015-1350-5 |