The Eigenvector Moment Flow and Local Quantum Unique Ergodicity

We prove that the distribution of eigenvectors of generalized Wigner matrices is universal both in the bulk and at the edge. This includes a probabilistic version of local quantum unique ergodicity and asymptotic normality of the eigenvector entries. The proof relies on analyzing the eigenvector flo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2017-02, Vol.350 (1), p.231-278
Hauptverfasser: Bourgade, P., Yau, H.-T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the distribution of eigenvectors of generalized Wigner matrices is universal both in the bulk and at the edge. This includes a probabilistic version of local quantum unique ergodicity and asymptotic normality of the eigenvector entries. The proof relies on analyzing the eigenvector flow under the Dyson Brownian motion. The key new ideas are: (1) the introduction of the eigenvector moment flow, a multi-particle random walk in a random environment, (2) an effective estimate on the regularity of this flow based on maximum principle and (3) optimal finite speed of propagation holds for the eigenvector moment flow with very high probability.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-016-2627-6