Topological Expansion in the Complex Cubic Log–Gas Model: One-Cut Case
We prove the topological expansion for the cubic log–gas partition function Z N ( t ) = ∫ Γ ⋯ ∫ Γ ∏ 1 ≤ j < k ≤ N ( z j - z k ) 2 ∏ k = 1 N e - N - z 3 3 + t z dz 1 ⋯ dz N , where t is a complex parameter and Γ is an unbounded contour on the complex plane extending from e π i ∞ to e π i / 3 ∞ . T...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2017-02, Vol.166 (3-4), p.784-827 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the topological expansion for the cubic log–gas partition function
Z
N
(
t
)
=
∫
Γ
⋯
∫
Γ
∏
1
≤
j
<
k
≤
N
(
z
j
-
z
k
)
2
∏
k
=
1
N
e
-
N
-
z
3
3
+
t
z
dz
1
⋯
dz
N
,
where
t
is a complex parameter and
Γ
is an unbounded contour on the complex plane extending from
e
π
i
∞
to
e
π
i
/
3
∞
. The complex cubic log–gas model exhibits two phase regions on the complex
t
-plane, with one cut and two cuts, separated by analytic critical arcs of the two types of phase transition: split of a cut and birth of a cut. The common point of the critical arcs is a tricritical point of the Painlevé I type. In the present paper we prove the topological expansion for
log
Z
N
(
t
)
in the one-cut phase region. The proof is based on the Riemann–Hilbert approach to semiclassical asymptotic expansions for the associated orthogonal polynomials and the theory of
S
-curves and quadratic differentials. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-016-1621-x |