A note for Riesz transforms associated with Schrödinger operators on the Heisenberg Group

Let H n be the Heisenberg group and Q = 2 n + 2 be its homogeneous dimension. The Schrödinger operator is denoted by - Δ H n + V , where Δ H n is the sub-Laplacian and the nonnegative potential V belongs to the reverse Hölder class B q 1 for q 1 ≥ Q 2 . Let H L p ( H n ) be the Hardy space associate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis and mathematical physics 2017-03, Vol.7 (1), p.31-45
Hauptverfasser: Liu, Yu, Tang, Guobin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H n be the Heisenberg group and Q = 2 n + 2 be its homogeneous dimension. The Schrödinger operator is denoted by - Δ H n + V , where Δ H n is the sub-Laplacian and the nonnegative potential V belongs to the reverse Hölder class B q 1 for q 1 ≥ Q 2 . Let H L p ( H n ) be the Hardy space associated with the Schrödinger operator for Q Q + δ 0 < p ≤ 1 , where δ 0 = min { 1 , 2 - Q q 1 } . In this note we show that the operators T 1 = V ( - Δ H n + V ) - 1 and T 2 = V 1 / 2 ( - Δ H n + V ) - 1 / 2 are bounded from H L p ( H n ) into L p ( H n ) . Our results are also valid on the stratified Lie group.
ISSN:1664-2368
1664-235X
DOI:10.1007/s13324-016-0128-6