A note for Riesz transforms associated with Schrödinger operators on the Heisenberg Group
Let H n be the Heisenberg group and Q = 2 n + 2 be its homogeneous dimension. The Schrödinger operator is denoted by - Δ H n + V , where Δ H n is the sub-Laplacian and the nonnegative potential V belongs to the reverse Hölder class B q 1 for q 1 ≥ Q 2 . Let H L p ( H n ) be the Hardy space associate...
Gespeichert in:
Veröffentlicht in: | Analysis and mathematical physics 2017-03, Vol.7 (1), p.31-45 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
H
n
be the Heisenberg group and
Q
=
2
n
+
2
be its homogeneous dimension. The Schrödinger operator is denoted by
-
Δ
H
n
+
V
, where
Δ
H
n
is the sub-Laplacian and the nonnegative potential
V
belongs to the reverse Hölder class
B
q
1
for
q
1
≥
Q
2
. Let
H
L
p
(
H
n
)
be the Hardy space associated with the Schrödinger operator for
Q
Q
+
δ
0
<
p
≤
1
, where
δ
0
=
min
{
1
,
2
-
Q
q
1
}
. In this note we show that the operators
T
1
=
V
(
-
Δ
H
n
+
V
)
-
1
and
T
2
=
V
1
/
2
(
-
Δ
H
n
+
V
)
-
1
/
2
are bounded from
H
L
p
(
H
n
)
into
L
p
(
H
n
)
. Our results are also valid on the stratified Lie group. |
---|---|
ISSN: | 1664-2368 1664-235X |
DOI: | 10.1007/s13324-016-0128-6 |