Efficient synthetic route for thio-triazole derivatives catalyzed by iron doped fluorapatite
Novel heterogeneous iron doped fluorapatite (Fe-FAp) catalysts were prepared by co-precipitation in the presence of amino acids, glutamic acid, aspartic acid, glycine, and histidine to establish their influence on catalytic activity of Fe-FAps. The four materials, named Fe-FAp/glutamic acid, Fe-FAp/...
Gespeichert in:
Veröffentlicht in: | Research on chemical intermediates 2017-03, Vol.43 (3), p.1793-1811 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Novel heterogeneous iron doped fluorapatite (Fe-FAp) catalysts were prepared by co-precipitation in the presence of amino acids, glutamic acid, aspartic acid, glycine, and histidine to establish their influence on catalytic activity of Fe-FAps. The four materials, named Fe-FAp/glutamic acid, Fe-FAp/aspartic acid, Fe-FAp/glycine, Fe-FAp/histidine, were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, microscopic (FE-SEM and HR-TEM) analysis, and N
2
sorption isotherms. Amino acids influenced the crystal growth and morphology of Fe-FAps differently and generated materials with diverse morphological features in size, pore properties and surface areas. The efficacy of different Fe-FAps as heterogeneous catalysts in the value added conversion of various aromatic aldehydes to thio-triazole derivatives with ethanol as solvent was investigated. For the title reaction, glutamic acid assisted Fe-FAp displayed superior activity with 96 % yield in a short-interval of times (10 min) at room temperature. Employing the optimized conditions, six different 1,2,4-triazolidine-3-thione derivatives were synthesized in excellent yields (91–96 %) at reaction temperature in |
---|---|
ISSN: | 0922-6168 1568-5675 |
DOI: | 10.1007/s11164-016-2730-5 |