On the Derived Norm of a Finite Group
Given a finite group G , we define a subgroup CS ( G ) as the intersection of the normalizers of all subgroups of the derived subgroup of G . Let CS 0 = 1. We define CS i +1 ( G )/ CS i ( G ) = CS ( G / CS i ( G )) for i ≥ 1. By CS ∞ ( G ) we denote the terminal term of the upper series. It is prove...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2017, Vol.68 (8), p.1184-1191 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a finite group
G
, we define a subgroup
CS
(
G
) as the intersection of the normalizers of all subgroups of the derived subgroup of
G
. Let
CS
0
= 1. We define
CS
i
+1
(
G
)/
CS
i
(
G
) =
CS
(
G
/
CS
i
(
G
)) for
i
≥ 1. By
CS
∞
(
G
) we denote the terminal term of the upper series. It is proved that the derived subgroup
G
′ is nilpotent if and only if
G
=
CS
∞
(
G
). In particular, we obtain the following result: if all elements of odd prime order of
G
are in
CS
(
G
), then
G
is solvable. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-017-1286-x |