Modules close to SSP- and SIP-modules

In this paper, we investigate some properties of SIP, SSP and CS-Rickart modules. We give equivalent conditions for SIP and SSP modules; establish connections between the class of semisimple artinian rings and the class of SIP rings. It shows that R is a semisimple artinian ring if and only if RR is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2017, Vol.38 (1), p.16-23
Hauptverfasser: Abyzov, A. N., Nhan, Tran Hoai Ngoc, Quynh, Truong Cong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 1
container_start_page 16
container_title Lobachevskii journal of mathematics
container_volume 38
creator Abyzov, A. N.
Nhan, Tran Hoai Ngoc
Quynh, Truong Cong
description In this paper, we investigate some properties of SIP, SSP and CS-Rickart modules. We give equivalent conditions for SIP and SSP modules; establish connections between the class of semisimple artinian rings and the class of SIP rings. It shows that R is a semisimple artinian ring if and only if RR is SIP and every right R-module has a SIP-cover. We also prove that R is a semiregular ring and J ( R ) = Z ( R R ) if only if every finitely generated projective module is a CSRickart module which is also a C 2 module.
doi_str_mv 10.1134/S1995080217010024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880768819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880768819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2e9f23c61a9b338f82f35ece1fd3d56c4a3b04df99c88b18d3daa72effa6a19a3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8F8RjNJG06Ocrin4UVF6rnkKaJuHSbNeke_PZmqQdBPM0w7_fewCPkEtgNgChvG1CqYsg41AwY4-URmQECUqUkP857lulBPyVnKW0ywaWUM3L9HLp971Jh-5BcMYaiada0MENXNMs13U7qOTnxpk_u4mfOydvD_eviia5eHpeLuxW1olIj5U55LqwEo1oh0CP3onLWge9EV0lbGtGysvNKWcQWMF-Nqbnz3kgDyog5uZpydzF87l0a9Sbs45BfakBktUQElSmYKBtDStF5vYsfWxO_NDB9aEP_aSN7-ORJmR3eXfyV_K_pG_mgXvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880768819</pqid></control><display><type>article</type><title>Modules close to SSP- and SIP-modules</title><source>SpringerLink (Online service)</source><creator>Abyzov, A. N. ; Nhan, Tran Hoai Ngoc ; Quynh, Truong Cong</creator><creatorcontrib>Abyzov, A. N. ; Nhan, Tran Hoai Ngoc ; Quynh, Truong Cong</creatorcontrib><description>In this paper, we investigate some properties of SIP, SSP and CS-Rickart modules. We give equivalent conditions for SIP and SSP modules; establish connections between the class of semisimple artinian rings and the class of SIP rings. It shows that R is a semisimple artinian ring if and only if RR is SIP and every right R-module has a SIP-cover. We also prove that R is a semiregular ring and J ( R ) = Z ( R R ) if only if every finitely generated projective module is a CSRickart module which is also a C 2 module.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080217010024</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Modules ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2017, Vol.38 (1), p.16-23</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-2e9f23c61a9b338f82f35ece1fd3d56c4a3b04df99c88b18d3daa72effa6a19a3</citedby><cites>FETCH-LOGICAL-c359t-2e9f23c61a9b338f82f35ece1fd3d56c4a3b04df99c88b18d3daa72effa6a19a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080217010024$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080217010024$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Abyzov, A. N.</creatorcontrib><creatorcontrib>Nhan, Tran Hoai Ngoc</creatorcontrib><creatorcontrib>Quynh, Truong Cong</creatorcontrib><title>Modules close to SSP- and SIP-modules</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this paper, we investigate some properties of SIP, SSP and CS-Rickart modules. We give equivalent conditions for SIP and SSP modules; establish connections between the class of semisimple artinian rings and the class of SIP rings. It shows that R is a semisimple artinian ring if and only if RR is SIP and every right R-module has a SIP-cover. We also prove that R is a semiregular ring and J ( R ) = Z ( R R ) if only if every finitely generated projective module is a CSRickart module which is also a C 2 module.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8F8RjNJG06Ocrin4UVF6rnkKaJuHSbNeke_PZmqQdBPM0w7_fewCPkEtgNgChvG1CqYsg41AwY4-URmQECUqUkP857lulBPyVnKW0ywaWUM3L9HLp971Jh-5BcMYaiada0MENXNMs13U7qOTnxpk_u4mfOydvD_eviia5eHpeLuxW1olIj5U55LqwEo1oh0CP3onLWge9EV0lbGtGysvNKWcQWMF-Nqbnz3kgDyog5uZpydzF87l0a9Sbs45BfakBktUQElSmYKBtDStF5vYsfWxO_NDB9aEP_aSN7-ORJmR3eXfyV_K_pG_mgXvQ</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Abyzov, A. N.</creator><creator>Nhan, Tran Hoai Ngoc</creator><creator>Quynh, Truong Cong</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Modules close to SSP- and SIP-modules</title><author>Abyzov, A. N. ; Nhan, Tran Hoai Ngoc ; Quynh, Truong Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2e9f23c61a9b338f82f35ece1fd3d56c4a3b04df99c88b18d3daa72effa6a19a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abyzov, A. N.</creatorcontrib><creatorcontrib>Nhan, Tran Hoai Ngoc</creatorcontrib><creatorcontrib>Quynh, Truong Cong</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abyzov, A. N.</au><au>Nhan, Tran Hoai Ngoc</au><au>Quynh, Truong Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modules close to SSP- and SIP-modules</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2017</date><risdate>2017</risdate><volume>38</volume><issue>1</issue><spage>16</spage><epage>23</epage><pages>16-23</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this paper, we investigate some properties of SIP, SSP and CS-Rickart modules. We give equivalent conditions for SIP and SSP modules; establish connections between the class of semisimple artinian rings and the class of SIP rings. It shows that R is a semisimple artinian ring if and only if RR is SIP and every right R-module has a SIP-cover. We also prove that R is a semiregular ring and J ( R ) = Z ( R R ) if only if every finitely generated projective module is a CSRickart module which is also a C 2 module.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080217010024</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2017, Vol.38 (1), p.16-23
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_1880768819
source SpringerLink (Online service)
subjects Algebra
Analysis
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Modules
Probability Theory and Stochastic Processes
title Modules close to SSP- and SIP-modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A17%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modules%20close%20to%20SSP-%20and%20SIP-modules&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Abyzov,%20A.%20N.&rft.date=2017&rft.volume=38&rft.issue=1&rft.spage=16&rft.epage=23&rft.pages=16-23&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080217010024&rft_dat=%3Cproquest_cross%3E1880768819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880768819&rft_id=info:pmid/&rfr_iscdi=true