Modules close to SSP- and SIP-modules
In this paper, we investigate some properties of SIP, SSP and CS-Rickart modules. We give equivalent conditions for SIP and SSP modules; establish connections between the class of semisimple artinian rings and the class of SIP rings. It shows that R is a semisimple artinian ring if and only if RR is...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2017, Vol.38 (1), p.16-23 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate some properties of SIP, SSP and CS-Rickart modules. We give equivalent conditions for SIP and SSP modules; establish connections between the class of semisimple artinian rings and the class of SIP rings. It shows that
R
is a semisimple artinian ring if and only if RR is SIP and every right R-module has a SIP-cover. We also prove that
R
is a semiregular ring and
J
(
R
) =
Z
(
R
R
) if only if every finitely generated projective module is a CSRickart module which is also a
C
2 module. |
---|---|
ISSN: | 1995-0802 1818-9962 |
DOI: | 10.1134/S1995080217010024 |