Modules close to SSP- and SIP-modules

In this paper, we investigate some properties of SIP, SSP and CS-Rickart modules. We give equivalent conditions for SIP and SSP modules; establish connections between the class of semisimple artinian rings and the class of SIP rings. It shows that R is a semisimple artinian ring if and only if RR is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2017, Vol.38 (1), p.16-23
Hauptverfasser: Abyzov, A. N., Nhan, Tran Hoai Ngoc, Quynh, Truong Cong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate some properties of SIP, SSP and CS-Rickart modules. We give equivalent conditions for SIP and SSP modules; establish connections between the class of semisimple artinian rings and the class of SIP rings. It shows that R is a semisimple artinian ring if and only if RR is SIP and every right R-module has a SIP-cover. We also prove that R is a semiregular ring and J ( R ) = Z ( R R ) if only if every finitely generated projective module is a CSRickart module which is also a C 2 module.
ISSN:1995-0802
1818-9962
DOI:10.1134/S1995080217010024