Block-Diagonal Similarity and Semiscalar Equivalence of Matrices
We determine the canonical form of a complex matrix B with respect to the similarity B → S −1 BS , where S is the direct sum of invertible upper triangular Toeplitz blocks. The conditions necessary and sufficient for the semiscalar equivalence of one type of polynomial matrices are established.
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2017-04, Vol.222 (1), p.35-49 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We determine the canonical form of a complex matrix
B
with respect to the similarity
B
→
S
−1
BS
, where
S
is the direct sum of invertible upper triangular Toeplitz blocks. The conditions necessary and sufficient for the semiscalar equivalence of one type of polynomial matrices are established. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-017-3280-0 |