Uniform Approximation of a Maxwellian Thermostat by Finite Reservoirs

We study a system of M particles in contact with a large but finite reservoir of N ≫ M particles within the framework of the Kac master equation modeling random collisions. The reservoir is initially in equilibrium at temperature T = β - 1 . We show that for large N , this evolution can be approxima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2017-04, Vol.351 (1), p.311-339
Hauptverfasser: Bonetto, F., Loss, M., Tossounian, H., Vaidyanathan, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a system of M particles in contact with a large but finite reservoir of N ≫ M particles within the framework of the Kac master equation modeling random collisions. The reservoir is initially in equilibrium at temperature T = β - 1 . We show that for large N , this evolution can be approximated by an effective equation in which the reservoir is described by a Maxwellian thermostat at temperature T . This approximation is proven for a suitable L 2 norm as well as for the Gabetta–Toscani–Wennberg (GTW) distance and is uniform in time .
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-016-2803-8