Sparse Representations of Clifford and Tensor Algebras in Maxima
Clifford algebras have broad applications in science and engineering. The use of Clifford algebras can be further promoted in these fields by availability of computational tools that automate tedious routine calculations. We offer an extensive demonstration of the applications of Clifford algebras i...
Gespeichert in:
Veröffentlicht in: | Advances in applied Clifford algebras 2017-03, Vol.27 (1), p.661-683 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Clifford algebras have broad applications in science and engineering. The use of Clifford algebras can be further promoted in these fields by availability of computational tools that automate tedious routine calculations. We offer an extensive demonstration of the applications of Clifford algebras in electromagnetism using the geometric algebra
G
3
≡
C
ℓ
3
,
0
as a computational model in the Maxima computer algebra system. We compare the geometric algebra-based approach with conventional symbolic tensor calculations supported by Maxima, based on the itensor package. The Clifford algebra functionality of Maxima is distributed as two new packages called clifford—for basic simplification of Clifford products, outer products, scalar products and inverses; and cliffordan—for applications of geometric calculus. |
---|---|
ISSN: | 0188-7009 1661-4909 |
DOI: | 10.1007/s00006-016-0682-x |