Construction of mutually unbiased maximally entangled bases through permutations of Hadamard matrices

We construct mutually unbiased maximally entangled bases (MUMEBs) in bipartite system C d ⊗ C d ( d ≥ 3 ) with d a power of a prime number. Precisely, by means of permutation matrices and Hadamard matrices, we construct 2 ( d - 1 ) MUMEBs in C d ⊗ C d . It follows that M ( d , d ) ≥ 2 ( d - 1 ) , wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2017-03, Vol.16 (3), p.1-11, Article 65
1. Verfasser: xu, Dengming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 3
container_start_page 1
container_title Quantum information processing
container_volume 16
creator xu, Dengming
description We construct mutually unbiased maximally entangled bases (MUMEBs) in bipartite system C d ⊗ C d ( d ≥ 3 ) with d a power of a prime number. Precisely, by means of permutation matrices and Hadamard matrices, we construct 2 ( d - 1 ) MUMEBs in C d ⊗ C d . It follows that M ( d , d ) ≥ 2 ( d - 1 ) , which is twice the number given in Liu et al. ( 2016 ), where M ( d ,  d ) denotes the maximal size of all sets of MUMEBs in C d ⊗ C d . In addition, let q be another power of a prime number, we construct MUMEBs in C d ⊗ C q d from those in C d ⊗ C d by the use of the tensor product of unitary matrices.
doi_str_mv 10.1007/s11128-017-1534-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880759466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880759466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bd31577e04880ae11bd4e817c9988703dcdbbbadf90dfa0c55fc55c85f4969ca3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewisTZ44jh2lqgCilSJDawtx3baVHkUP6T273EaFmxYWLbG956ZuQjdA3kEQviTB4BcYAIcA6MFPl6gBTBOMVCaX57fBBPO2DW68X5PSA6lKBfIrsbBBxd1aMchG5usjyGqrjtlcahb5a3JenVs-3PJDkEN2y7V6vTjs7BzY9zusoN1yaYmhJ8Ya2VUr9xkDa7V1t-iq0Z13t793kv09fryuVrjzcfb--p5gzWFMuDa0DQnt6QQgigLUJvCCuC6qoTghBpt6rpWpqmIaRTRjDXpaMGaoiorregSPczcgxu_o_VB7sfohtRSQkJyVhVlmVQwq7QbvXe2kQeXNnQnCUROaco5TZnSlFOa8pg8-ezxSTtsrftD_tf0A67wevs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880759466</pqid></control><display><type>article</type><title>Construction of mutually unbiased maximally entangled bases through permutations of Hadamard matrices</title><source>SpringerLink Journals - AutoHoldings</source><creator>xu, Dengming</creator><creatorcontrib>xu, Dengming</creatorcontrib><description>We construct mutually unbiased maximally entangled bases (MUMEBs) in bipartite system C d ⊗ C d ( d ≥ 3 ) with d a power of a prime number. Precisely, by means of permutation matrices and Hadamard matrices, we construct 2 ( d - 1 ) MUMEBs in C d ⊗ C d . It follows that M ( d , d ) ≥ 2 ( d - 1 ) , which is twice the number given in Liu et al. ( 2016 ), where M ( d ,  d ) denotes the maximal size of all sets of MUMEBs in C d ⊗ C d . In addition, let q be another power of a prime number, we construct MUMEBs in C d ⊗ C q d from those in C d ⊗ C d by the use of the tensor product of unitary matrices.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-017-1534-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Data Structures and Information Theory ; Mathematical Physics ; Permutations ; Physics ; Physics and Astronomy ; Prime numbers ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Spintronics</subject><ispartof>Quantum information processing, 2017-03, Vol.16 (3), p.1-11, Article 65</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bd31577e04880ae11bd4e817c9988703dcdbbbadf90dfa0c55fc55c85f4969ca3</citedby><cites>FETCH-LOGICAL-c316t-bd31577e04880ae11bd4e817c9988703dcdbbbadf90dfa0c55fc55c85f4969ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-017-1534-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-017-1534-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>xu, Dengming</creatorcontrib><title>Construction of mutually unbiased maximally entangled bases through permutations of Hadamard matrices</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>We construct mutually unbiased maximally entangled bases (MUMEBs) in bipartite system C d ⊗ C d ( d ≥ 3 ) with d a power of a prime number. Precisely, by means of permutation matrices and Hadamard matrices, we construct 2 ( d - 1 ) MUMEBs in C d ⊗ C d . It follows that M ( d , d ) ≥ 2 ( d - 1 ) , which is twice the number given in Liu et al. ( 2016 ), where M ( d ,  d ) denotes the maximal size of all sets of MUMEBs in C d ⊗ C d . In addition, let q be another power of a prime number, we construct MUMEBs in C d ⊗ C q d from those in C d ⊗ C d by the use of the tensor product of unitary matrices.</description><subject>Data Structures and Information Theory</subject><subject>Mathematical Physics</subject><subject>Permutations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Prime numbers</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewisTZ44jh2lqgCilSJDawtx3baVHkUP6T273EaFmxYWLbG956ZuQjdA3kEQviTB4BcYAIcA6MFPl6gBTBOMVCaX57fBBPO2DW68X5PSA6lKBfIrsbBBxd1aMchG5usjyGqrjtlcahb5a3JenVs-3PJDkEN2y7V6vTjs7BzY9zusoN1yaYmhJ8Ya2VUr9xkDa7V1t-iq0Z13t793kv09fryuVrjzcfb--p5gzWFMuDa0DQnt6QQgigLUJvCCuC6qoTghBpt6rpWpqmIaRTRjDXpaMGaoiorregSPczcgxu_o_VB7sfohtRSQkJyVhVlmVQwq7QbvXe2kQeXNnQnCUROaco5TZnSlFOa8pg8-ezxSTtsrftD_tf0A67wevs</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>xu, Dengming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Construction of mutually unbiased maximally entangled bases through permutations of Hadamard matrices</title><author>xu, Dengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bd31577e04880ae11bd4e817c9988703dcdbbbadf90dfa0c55fc55c85f4969ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Data Structures and Information Theory</topic><topic>Mathematical Physics</topic><topic>Permutations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Prime numbers</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>xu, Dengming</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>xu, Dengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of mutually unbiased maximally entangled bases through permutations of Hadamard matrices</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>16</volume><issue>3</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>65</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>We construct mutually unbiased maximally entangled bases (MUMEBs) in bipartite system C d ⊗ C d ( d ≥ 3 ) with d a power of a prime number. Precisely, by means of permutation matrices and Hadamard matrices, we construct 2 ( d - 1 ) MUMEBs in C d ⊗ C d . It follows that M ( d , d ) ≥ 2 ( d - 1 ) , which is twice the number given in Liu et al. ( 2016 ), where M ( d ,  d ) denotes the maximal size of all sets of MUMEBs in C d ⊗ C d . In addition, let q be another power of a prime number, we construct MUMEBs in C d ⊗ C q d from those in C d ⊗ C d by the use of the tensor product of unitary matrices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-017-1534-x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2017-03, Vol.16 (3), p.1-11, Article 65
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_1880759466
source SpringerLink Journals - AutoHoldings
subjects Data Structures and Information Theory
Mathematical Physics
Permutations
Physics
Physics and Astronomy
Prime numbers
Quantum Computing
Quantum Information Technology
Quantum Physics
Spintronics
title Construction of mutually unbiased maximally entangled bases through permutations of Hadamard matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A43%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20mutually%20unbiased%20maximally%20entangled%20bases%20through%20permutations%20of%20Hadamard%20matrices&rft.jtitle=Quantum%20information%20processing&rft.au=xu,%20Dengming&rft.date=2017-03-01&rft.volume=16&rft.issue=3&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=65&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-017-1534-x&rft_dat=%3Cproquest_cross%3E1880759466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880759466&rft_id=info:pmid/&rfr_iscdi=true