Construction of mutually unbiased maximally entangled bases through permutations of Hadamard matrices
We construct mutually unbiased maximally entangled bases (MUMEBs) in bipartite system C d ⊗ C d ( d ≥ 3 ) with d a power of a prime number. Precisely, by means of permutation matrices and Hadamard matrices, we construct 2 ( d - 1 ) MUMEBs in C d ⊗ C d . It follows that M ( d , d ) ≥ 2 ( d - 1 ) , wh...
Gespeichert in:
Veröffentlicht in: | Quantum information processing 2017-03, Vol.16 (3), p.1-11, Article 65 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct mutually unbiased maximally entangled bases (MUMEBs) in bipartite system
C
d
⊗
C
d
(
d
≥
3
)
with
d
a power of a prime number. Precisely, by means of permutation matrices and Hadamard matrices, we construct
2
(
d
-
1
)
MUMEBs in
C
d
⊗
C
d
. It follows that
M
(
d
,
d
)
≥
2
(
d
-
1
)
, which is twice the number given in Liu et al. (
2016
), where
M
(
d
,
d
) denotes the maximal size of all sets of MUMEBs in
C
d
⊗
C
d
. In addition, let
q
be another power of a prime number, we construct MUMEBs in
C
d
⊗
C
q
d
from those in
C
d
⊗
C
d
by the use of the tensor product of unitary matrices. |
---|---|
ISSN: | 1570-0755 1573-1332 |
DOI: | 10.1007/s11128-017-1534-x |