Hilbert Boundary Value Problems with Fermionic Weight in $${\mathbb{R}^{3}}$$ R 3
We study the Hilbert boundary value problem with Fermionic weight for the Dirac operator on smooth surfaces of R 3 . We give the solution to the Hilbert boundary value problem on the half space and the unit ball of R 3 , respectively. Then, we present sufficient and necessary conditions for the solv...
Gespeichert in:
Veröffentlicht in: | Advances in applied Clifford algebras 2017-03, Vol.27 (1), p.87-98 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Hilbert boundary value problem with Fermionic weight for the Dirac operator on smooth surfaces of R 3 . We give the solution to the Hilbert boundary value problem on the half space and the unit ball of R 3 , respectively. Then, we present sufficient and necessary conditions for the solvability of the Hilbert boundary value problem inmore general domains with smooth boundary in R 3 . |
---|---|
ISSN: | 0188-7009 1661-4909 |
DOI: | 10.1007/s00006-016-0686-6 |