Hilbert Boundary Value Problems with Fermionic Weight in $${\mathbb{R}^{3}}$$ R 3

We study the Hilbert boundary value problem with Fermionic weight for the Dirac operator on smooth surfaces of R 3 . We give the solution to the Hilbert boundary value problem on the half space and the unit ball of R 3 , respectively. Then, we present sufficient and necessary conditions for the solv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied Clifford algebras 2017-03, Vol.27 (1), p.87-98
Hauptverfasser: Cerejeiras, P., Kähler, U., Ku, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Hilbert boundary value problem with Fermionic weight for the Dirac operator on smooth surfaces of R 3 . We give the solution to the Hilbert boundary value problem on the half space and the unit ball of R 3 , respectively. Then, we present sufficient and necessary conditions for the solvability of the Hilbert boundary value problem inmore general domains with smooth boundary in R 3 .
ISSN:0188-7009
1661-4909
DOI:10.1007/s00006-016-0686-6