An Anderson–Choquet-type theorem and a characterization of weakly chainable continua

We introduce the concept of proper convergence of a sequence of subspaces of a metric space and then prove that a continuum X is weakly chainable if there is a sequence of arcs converging properly to it. Also, we prove that a continuum X is weakly chainable if and only if there is a sequence of arcs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2017-04, Vol.14 (2), p.1-14, Article 52
Hauptverfasser: Banič, Iztok, Črepnjak, Matevž, Merhar, Matej, Milutinović, Uroš, Sovič, Tina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the concept of proper convergence of a sequence of subspaces of a metric space and then prove that a continuum X is weakly chainable if there is a sequence of arcs converging properly to it. Also, we prove that a continuum X is weakly chainable if and only if there is a sequence of arcs in the Hilbert cube converging properly to an embedded copy of X . The proof is based on an Anderson–Choquet-type theorem (valid also for set-valued functions).
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-017-0868-z