An Anderson–Choquet-type theorem and a characterization of weakly chainable continua
We introduce the concept of proper convergence of a sequence of subspaces of a metric space and then prove that a continuum X is weakly chainable if there is a sequence of arcs converging properly to it. Also, we prove that a continuum X is weakly chainable if and only if there is a sequence of arcs...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2017-04, Vol.14 (2), p.1-14, Article 52 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the concept of proper convergence of a sequence of subspaces of a metric space and then prove that a continuum
X
is weakly chainable if there is a sequence of arcs converging properly to it. Also, we prove that a continuum
X
is weakly chainable if and only if there is a sequence of arcs in the Hilbert cube converging properly to an embedded copy of
X
. The proof is based on an Anderson–Choquet-type theorem (valid also for set-valued functions). |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-017-0868-z |